Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNo x1.
Let x2 of type ο be given.
Assume H2: ∀ x3 x4 . (∀ x5 . x5x3∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5SNoR x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5x4∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)(∀ x5 . x5SNoR x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)mul_SNo x0 x1 = SNoCut x3 x4x2.
Apply H2 with binunion {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo ... ...)|x3 ∈ setprod (SNoR x0) (SNoR x1)}, ... leaving 7 subgoals.
...
...
...
...
...
...
...