Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιιιο be given.
Let x2 of type ιι be given.
Let x3 of type ιιιιιι be given.
Let x4 of type ιο be given.
Let x5 of type ιιιο be given.
Let x6 of type ιι be given.
Let x7 of type ιιιιιι be given.
Let x8 of type ιο be given.
Let x9 of type ιιιο be given.
Let x10 of type ιι be given.
Let x11 of type ιιιιιι be given.
Let x12 of type ιι be given.
Let x13 of type ιιιι be given.
Let x14 of type ιι be given.
Let x15 of type ιιιι be given.
Let x16 of type ιι be given.
Let x17 of type ιιιι be given.
Let x18 of type ιι be given.
Assume H0: MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x12 x13.
Assume H1: MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x14 x15.
Assume H2: MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x12 x13 x14 x15 x18.
Assume H3: MetaFunctor x4 x5 x6 x7 x8 x9 x10 x11 x16 x17.
Apply unknownprop_d4b40e23fc0295f5b3315cbc1d218fe48d2b71569cbf77e67c33e2487a1d9a24 with x0, x1, x2, x3, x4, x5, x6, x7, x12, x13, MetaNatTrans x0 x1 x2 x3 x8 x9 x10 x11 (λ x19 . x16 (x12 x19)) (λ x19 x20 x21 . x17 (x12 x19) (x12 x20) (x13 x19 x20 x21)) (λ x19 . x16 (x14 x19)) (λ x19 x20 x21 . x17 (x14 x19) (x14 x20) (x15 x19 x20 x21)) (λ x19 . x17 (x12 x19) (x14 x19) (x18 x19)) leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H4: ∀ x19 . x0 x19x4 (x12 x19).
Assume H5: ∀ x19 x20 x21 . x0 x19x0 x20x1 x19 x20 x21x5 (x12 x19) (x12 x20) (x13 x19 x20 x21).
Assume H6: ∀ x19 . x0 x19x13 x19 x19 (x2 x19) = x6 (x12 x19).
Assume H7: ∀ x19 x20 x21 x22 x23 . x0 x19x0 x20x0 x21x1 x19 x20 x22x1 x20 x21 x23x13 x19 x21 (x3 x19 x20 x21 x23 x22) = x7 (x12 x19) (x12 x20) (x12 x21) (x13 x20 x21 x23) (x13 x19 x20 x22).
Apply unknownprop_d4b40e23fc0295f5b3315cbc1d218fe48d2b71569cbf77e67c33e2487a1d9a24 with x0, x1, x2, x3, x4, x5, x6, x7, x14, x15, MetaNatTrans x0 x1 x2 x3 x8 x9 x10 x11 (λ x19 . x16 (x12 x19)) (λ x19 x20 x21 . x17 (x12 x19) (x12 x20) (x13 x19 x20 x21)) (λ x19 . x16 (x14 x19)) (λ x19 x20 x21 . x17 (x14 x19) (x14 x20) (x15 x19 x20 x21)) (λ x19 . x17 (x12 x19) (x14 x19) (x18 x19)) leaving 2 subgoals.
The subproof is completed by applying H1.
Assume H8: ∀ x19 . x0 x19x4 (x14 x19).
Assume H9: ∀ x19 x20 x21 . .........x5 (x14 x19) (x14 x20) (x15 ... ... ...).
...