Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιιιιιιιιιιιιι be given.
Let x1 of type ιιιιιιιιιιιιιι be given.
Assume H0: Church13_p x0.
Assume H1: Church13_p x1.
Apply H0 with λ x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x2 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 = x1 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12x2 = x1 leaving 13 subgoals.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 = x2 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12(λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = x2 leaving 13 subgoals.
Assume H2: (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 = (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12.
Let x2 of type (ιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιι) → ο be given.
Assume H3: x2 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3).
The subproof is completed by applying H3.
Assume H2: (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 = (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x3) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12.
Apply FalseE with (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x3.
Apply neq_1_0.
Let x2 of type ιιο be given.
The subproof is completed by applying H2 with λ x3 x4 . x2 x4 x3.
Assume H2: (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 = (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x4) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12.
Apply FalseE with (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x4.
Apply neq_2_0.
Let x2 of type ιιο be given.
The subproof is completed by applying H2 with λ x3 x4 . x2 x4 x3.
Assume H2: (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 = (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x5) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12.
Apply FalseE with (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x5.
Apply neq_3_0.
Let x2 of type ιιο be given.
The subproof is completed by applying H2 with λ x3 x4 . x2 x4 x3.
Assume H2: (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x2) 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 ... = ....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...