Let x0 of type ι → ο be given.
Let x1 of type ι → ο be given.
Let x2 of type ι → ι → ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ι be given.
Let x5 of type ι → ο be given.
Let x6 of type ι be given.
Let x7 of type ι → ο be given.
Let x8 of type ι → ι be given.
Let x9 of type ι → ο be given.
Let x10 of type ι → ο be given.
Let x11 of type ι → ι be given.
Let x12 of type ι → ι be given.
Let x13 of type ι be given.
Let x14 of type ι → ι → ι → ι → ι be given.
Let x15 of type ι → ι → ο be given.
Let x16 of type ι be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι be given.
Let x21 of type ι → ι → ι be given.
Let x22 of type ι be given.
Let x23 of type ι → ι be given.
Let x24 of type ι → ο be given.
Let x25 of type ι → ο be given.
Let x26 of type ι → ι → ι → ι be given.
Let x27 of type ι → ι → ι → ι be given.
Let x28 of type ι be given.
Let x29 of type ι → ι → ο be given.
Let x30 of type ι → ι be given.
Let x31 of type ι → ι → ο be given.
Let x32 of type ι → ο be given.
Assume H5:
∀ x33 x34 . x32 x34 ⟶ (x34 = x33 ⟶ False) ⟶ x32 x33 ⟶ False.
Assume H6:
∀ x33 x34 x35 x36 x37 x38 . (x0 x38 ⟶ False) ⟶ x5 x38 ⟶ x1 x38 ⟶ x3 x33 (x4 x38) ⟶ x3 x37 (x4 x38) ⟶ x3 x34 (x4 x38) ⟶ x3 x36 (x4 x38) ⟶ x3 x35 (x4 x38) ⟶ x2 x38 x33 x37 x34 ⟶ x2 x38 x33 x37 x36 ⟶ x2 x38 x33 x37 x35 ⟶ (x33 = x37 ⟶ False) ⟶ (x2 x38 x34 x36 x35 ⟶ False) ⟶ False.
Assume H7:
∀ x33 x34 . x31 x33 x34 ⟶ x32 x34 ⟶ False.
Assume H8:
∀ x33 . x32 x33 ⟶ (x33 = x6 ⟶ False) ⟶ False.
Assume H9:
∀ x33 x34 x35 . x31 x33 x34 ⟶ x3 x34 (x30 x35) ⟶ x32 x35 ⟶ False.
Assume H10:
∀ x33 x34 x35 . x31 x34 x35 ⟶ x3 x35 (x30 x33) ⟶ (x3 x34 x33 ⟶ False) ⟶ False.
Assume H11:
∀ x33 x34 . x29 x34 x33 ⟶ (x3 x34 (x30 x33) ⟶ False) ⟶ False.
Assume H12:
∀ x33 x34 . x3 x34 (x30 x33) ⟶ (x29 x34 x33 ⟶ False) ⟶ False.
Assume H13:
∀ x33 x34 . x3 x33 x34 ⟶ (x32 x34 ⟶ False) ⟶ (x31 x33 x34 ⟶ False) ⟶ False.
Assume H14:
∀ x33 x34 . x31 x34 x33 ⟶ (x3 x34 x33 ⟶ False) ⟶ False.
Assume H15:
x32 x28 ⟶ False.
Assume H16:
∀ x33 . (x29 x33 x33 ⟶ False) ⟶ False.
Assume H17:
∀ x33 x34 x35 . (x0 x35 ⟶ False) ⟶ x5 x35 ⟶ x1 x35 ⟶ x3 x33 (x4 x35) ⟶ x3 x34 (x4 x35) ⟶ (x27 x35 x33 x34 = x26 x35 x33 x34 ⟶ False) ⟶ False.
Assume H18:
∀ x33 . (x7 x33 ⟶ False) ⟶ x9 x33 ⟶ x32 (x8 x33) ⟶ False.
Assume H19:
∀ x33 . (x7 x33 ⟶ False) ⟶ x9 x33 ⟶ (x3 (x8 x33) (x30 (x4 x33)) ⟶ False) ⟶ False.
Assume H20:
∀ x33 . (x0 x33 ⟶ False) ⟶ x9 x33 ⟶ x10 (x11 x33) ⟶ False.
Assume H21:
∀ x33 . (x0 x33 ⟶ False) ⟶ x9 x33 ⟶ (x3 (x11 x33) (x30 (x4 x33)) ⟶ False) ⟶ False.