Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι(ιο) → ο be given.
Assume H0: ∃ x1 . and (∃ x2 : ι → ο . x0 x1 x2) (∀ x2 x3 : ι → ο . x0 x1 x2x0 x1 x3x2 = x3).
Claim L1: and (∃ x1 : ι → ο . x0 (DescrR_i_io_1 x0) x1) (∀ x1 x2 : ι → ο . x0 (DescrR_i_io_1 x0) x1x0 (DescrR_i_io_1 x0) x2x1 = x2)
Apply Eps_i_ex with λ x1 . and (∃ x2 : ι → ο . x0 x1 x2) (∀ x2 x3 : ι → ο . x0 x1 x2x0 x1 x3x2 = x3).
The subproof is completed by applying H0.
Apply L1 with x0 (DescrR_i_io_1 x0) (DescrR_i_io_2 x0).
Assume H2: ∃ x1 : ι → ο . x0 (DescrR_i_io_1 x0) x1.
Assume H3: ∀ x1 x2 : ι → ο . x0 (DescrR_i_io_1 x0) x1x0 (DescrR_i_io_1 x0) x2x1 = x2.
Apply Descr_Vo1_prop with λ x1 : ι → ο . x0 (DescrR_i_io_1 x0) x1 leaving 2 subgoals.
The subproof is completed by applying H2.
The subproof is completed by applying H3.