Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ι be given.
Let x3 of type ιι be given.
Let x4 of type ιι be given.
Assume H0: ∀ x5 . In x5 x2x3 x5 = x4 x5.
Apply unknownprop_b257b354d80b58d9a8444b167a21f47b4aabc910dc3698404491d5ef01e18cf3 with In (Union x2) x2, (λ x5 . λ x6 : ι → ι . If_i (In (Union x5) x5) (x1 (Union x5) (x6 (Union x5))) x0) x2 x3 = (λ x5 . λ x6 : ι → ι . If_i (In (Union x5) x5) (x1 (Union x5) (x6 (Union x5))) x0) x2 x4 leaving 2 subgoals.
Assume H1: In (Union x2) x2.
Apply H0 with Union x2, λ x5 x6 . If_i (In (Union x2) x2) (x1 (Union x2) x6) x0 = If_i (In (Union x2) x2) (x1 (Union x2) (x4 (Union x2))) x0 leaving 2 subgoals.
The subproof is completed by applying H1.
Let x5 of type ιιο be given.
Assume H2: x5 (If_i (In (Union x2) x2) (x1 (Union x2) (x4 (Union x2))) x0) (If_i (In (Union x2) x2) (x1 (Union x2) (x4 (Union x2))) x0).
The subproof is completed by applying H2.
Assume H1: not (In (Union x2) x2).
Claim L2: If_i (In (Union x2) x2) (x1 (Union x2) (x3 (Union x2))) x0 = x0
Apply unknownprop_5a150bd86f4285de5d98c60b17d4452a655b4d88de0a02247259cdad6e6d992c with In (Union x2) x2, x1 (Union x2) (x3 (Union x2)), x0.
The subproof is completed by applying H1.
Claim L3: If_i (In (Union x2) x2) (x1 (Union x2) (x4 (Union x2))) x0 = x0
Apply unknownprop_5a150bd86f4285de5d98c60b17d4452a655b4d88de0a02247259cdad6e6d992c with In (Union x2) x2, x1 (Union x2) (x4 (Union x2)), x0.
The subproof is completed by applying H1.
Apply L3 with λ x5 x6 . If_i (In (Union x2) x2) (x1 (Union x2) (x3 (Union x2))) x0 = x6.
The subproof is completed by applying L2.