Apply H1 with
λ x2 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x2,
λ x2 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x2 leaving 6 subgoals.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
The subproof is completed by applying H2.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
The subproof is completed by applying H2.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x3 of type (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → ο be given.
Assume H2: x3 ((λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x4) x2) x2.
The subproof is completed by applying H2.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x3 of type (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → ο be given.
Assume H2: x3 ((λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x4) x2) x2.
The subproof is completed by applying H2.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x3 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x4 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x5 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x6 of type (ι → ι → ι) → (ι → ι → ι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → ο be given.
Assume H2: x2 (λ x3 x4 x5 : (ι → ι) → ι → ι . x3) (λ x3 x4 x5 : (ι → ι) → ι → ι . x3).
The subproof is completed by applying H2.