Let x0 of type ο be given.
Apply H0 with
3d151...
Let x1 of type ο be given.
Apply H1 with
λ x2 x3 . lam (setprod (ap x2 0) (ap x3 0)) (λ x4 . ap x4 0).
Let x2 of type ο be given.
Apply H2 with
λ x3 x4 . lam (setprod (ap x3 0) (ap x4 0)) (λ x5 . ap x5 1).
Let x3 of type ο be given.
Apply H3 with
λ x4 x5 x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9))).
Let x4 of type ι be given.
Let x5 of type ι be given.
Apply unknownprop_94c3be6982bd677952253aa29af894411b7bd1f90353a0d2fdecf3d31d757dbd with
x4,
λ x6 . Quasigroup (3d151.. x6 x5) leaving 2 subgoals.
The subproof is completed by applying H5.
Let x6 of type ι be given.
Let x7 of type ι → ι → ι be given.
Assume H7: ∀ x8 . x8 ∈ x6 ⟶ ∀ x9 . x9 ∈ x6 ⟶ x7 x8 x9 ∈ x6.
Assume H8:
∀ x8 . x8 ∈ x6 ⟶ bij x6 x6 (x7 x8).
Assume H9:
∀ x8 . x8 ∈ x6 ⟶ bij x6 x6 (λ x9 . x7 x9 x8).
Apply unknownprop_94c3be6982bd677952253aa29af894411b7bd1f90353a0d2fdecf3d31d757dbd with
x5,
λ x8 . Quasigroup (3d151.. (pack_b x6 x7) x8) leaving 2 subgoals.
The subproof is completed by applying H6.
Let x8 of type ι be given.
Let x9 of type ι → ι → ι be given.
Assume H10: ∀ x10 . x10 ∈ x8 ⟶ ∀ x11 . x11 ∈ x8 ⟶ x9 x10 x11 ∈ x8.
Assume H11:
∀ x10 . x10 ∈ x8 ⟶ bij x8 x8 (x9 x10).
Assume H12:
∀ x10 . x10 ∈ x8 ⟶ bij x8 x8 (λ x11 . x9 x11 x10).
Apply unknownprop_84b7a40932bac82c3ecf4fa49a1bea60dc509b45bddc18bf9510d8d39709513f with
x6,
x7,
x8,
x9,
λ x10 x11 . Quasigroup x11.
Apply unknownprop_e3d260e78a123ac716d567ab700d9fc3334efbbe9012a4545cf5b7c9b546016d with
setprod x6 x8,
λ x10 x11 . lam 2 (λ x12 . If_i (x12 = 0) (x7 (ap x10 0) ...) ...) leaving 3 subgoals.
Apply unknownprop_eb47bb5cd73cad8b4ef0b3375f134d111d4de0e7e5fceab966d004fbffa38e8d with
Quasigroup leaving 2 subgoals.
The subproof is completed by applying L4.
The subproof is completed by applying L5.