Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 : ι → ι → ι . (∃ x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Quasigroup MagmaHom struct_id struct_comp x1 x2 x3 x4)x0.
Apply H0 with 3d151...
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι → ι . (∃ x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Quasigroup MagmaHom struct_id struct_comp 3d151.. x2 x3 x4)x1.
Apply H1 with λ x2 x3 . lam (setprod (ap x2 0) (ap x3 0)) (λ x4 . ap x4 0).
Let x2 of type ο be given.
Assume H2: ∀ x3 : ι → ι → ι . (∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Quasigroup MagmaHom struct_id struct_comp 3d151.. (λ x5 x6 . lam (setprod (ap x5 0) (ap x6 0)) (λ x7 . ap x7 0)) x3 x4)x2.
Apply H2 with λ x3 x4 . lam (setprod (ap x3 0) (ap x4 0)) (λ x5 . ap x5 1).
Let x3 of type ο be given.
Assume H3: ∀ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Quasigroup MagmaHom struct_id struct_comp 3d151.. (λ x5 x6 . lam (setprod (ap x5 0) (ap x6 0)) (λ x7 . ap x7 0)) (λ x5 x6 . lam (setprod (ap x5 0) (ap x6 0)) (λ x7 . ap x7 1)) x4x3.
Apply H3 with λ x4 x5 x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9))).
Claim L4: ...
...
Claim L5: ∀ x4 x5 . Quasigroup x4Quasigroup x5Quasigroup (3d151.. x4 x5)
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H5: Quasigroup x4.
Assume H6: Quasigroup x5.
Apply unknownprop_94c3be6982bd677952253aa29af894411b7bd1f90353a0d2fdecf3d31d757dbd with x4, λ x6 . Quasigroup (3d151.. x6 x5) leaving 2 subgoals.
The subproof is completed by applying H5.
Let x6 of type ι be given.
Let x7 of type ιιι be given.
Assume H7: ∀ x8 . x8x6∀ x9 . x9x6x7 x8 x9x6.
Assume H8: ∀ x8 . x8x6bij x6 x6 (x7 x8).
Assume H9: ∀ x8 . x8x6bij x6 x6 (λ x9 . x7 x9 x8).
Apply unknownprop_94c3be6982bd677952253aa29af894411b7bd1f90353a0d2fdecf3d31d757dbd with x5, λ x8 . Quasigroup (3d151.. (pack_b x6 x7) x8) leaving 2 subgoals.
The subproof is completed by applying H6.
Let x8 of type ι be given.
Let x9 of type ιιι be given.
Assume H10: ∀ x10 . x10x8∀ x11 . x11x8x9 x10 x11x8.
Assume H11: ∀ x10 . x10x8bij x8 x8 (x9 x10).
Assume H12: ∀ x10 . x10x8bij x8 x8 (λ x11 . x9 x11 x10).
Apply unknownprop_84b7a40932bac82c3ecf4fa49a1bea60dc509b45bddc18bf9510d8d39709513f with x6, x7, x8, x9, λ x10 x11 . Quasigroup x11.
Claim L13: ...
...
Apply unknownprop_e3d260e78a123ac716d567ab700d9fc3334efbbe9012a4545cf5b7c9b546016d with setprod x6 x8, λ x10 x11 . lam 2 (λ x12 . If_i (x12 = 0) (x7 (ap x10 0) ...) ...) leaving 3 subgoals.
...
...
...
Apply unknownprop_eb47bb5cd73cad8b4ef0b3375f134d111d4de0e7e5fceab966d004fbffa38e8d with Quasigroup leaving 2 subgoals.
The subproof is completed by applying L4.
The subproof is completed by applying L5.