Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιιιιιιιιιιιιιιιιι be given.
Let x1 of type ιιιιιιιιιιιιιιιιιι be given.
Assume H0: Church17_lt8 x0.
Assume H1: Church17_lt8 x1.
Apply H0 with λ x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (TwoRamseyGraph_3_6_Church17 x2 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x16) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x2 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x17) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x2 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x18) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x16) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x17) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x18) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x2 x1 = λ x3 x4 . x4)∀ x3 : ο . (84660.. x2x3)(84660.. x1x3)x3 leaving 8 subgoals.
Assume H2: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15) = λ x2 x3 . x3.
Assume H3: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16) = λ x2 x3 . x3.
Assume H4: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17) = λ x2 x3 . x3.
Apply FalseE with (TwoRamseyGraph_3_6_Church17 x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15) = λ x2 x3 . x3)(TwoRamseyGraph_3_6_Church17 x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16) = λ x2 x3 . x3)(TwoRamseyGraph_3_6_Church17 x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17) = λ x2 x3 . x3)(TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) x1 = λ x2 x3 . x3)∀ x2 : ο . (84660.. (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3)x2)(84660.. x1x2)x2.
Apply unknownprop_1019f796b5519c5beeeef55b1daae2de48848a97e75d217687db0a2449fd5208.
Let x2 of type (ιιι) → (ιιι) → ο be given.
The subproof is completed by applying H4 with λ x3 x4 : ι → ι → ι . x2 x4 x3.
Assume H2: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15) = λ x2 x3 . x3.
Assume H3: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16) = λ x2 x3 . x3.
Assume H4: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17) = λ x2 x3 . x3.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (TwoRamseyGraph_3_6_Church17 x2 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x16) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x2 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x17) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 x2 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x18) = λ x3 x4 . x4)(TwoRamseyGraph_3_6_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x4) x2 = λ x3 x4 . x4)∀ x3 : ο . (84660.. (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5)x3)(84660.. x2x3)x3 leaving 8 subgoals.
Assume H5: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15) = λ x2 x3 . x3.
Assume H6: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16) = λ x2 x3 . x3.
Assume H7: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17) = λ x2 x3 . x3.
Apply FalseE with (TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) = λ x2 x3 . x3)∀ x2 : ο . (84660.. (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x4)x2)(84660.. (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3)x2)x2.
Apply unknownprop_1019f796b5519c5beeeef55b1daae2de48848a97e75d217687db0a2449fd5208.
Let x2 of type (ιιι) → (ιιι) → ο be given.
The subproof is completed by applying H7 with λ x3 x4 : ι → ι → ι . x2 x4 x3.
Assume H5: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15) = λ x2 x3 . x3.
Assume H6: TwoRamseyGraph_3_6_Church17 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16) = λ x2 x3 . x3.
...
...
...
...
...
...
...
...
...
...
...
...
...