Let x0 of type ι → (ι → ι) → (ι → ι) → (ι → ι → ο) → (ι → ι → ο) → ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι be given.
Let x3 of type ι → ι be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι → ι → ο be given.
Assume H0:
∀ x6 : ι → ι . (∀ x7 . prim1 x7 x1 ⟶ x2 x7 = x6 x7) ⟶ ∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1 ⟶ x3 x8 = x7 x8) ⟶ ∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1 ⟶ ∀ x10 . prim1 x10 x1 ⟶ iff (x4 x9 x10) (x8 x9 x10)) ⟶ ∀ x9 : ι → ι → ο . (∀ x10 . prim1 x10 x1 ⟶ ∀ x11 . prim1 x11 x1 ⟶ iff (x5 x10 x11) (x9 x10 x11)) ⟶ x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5.
Apply unknownprop_746c504ce6d83f9198628211620c6dd932e9ad2ee5565467ff3c37a1a593fb8e with
x1,
x2,
x3,
x4,
x5,
λ x6 x7 . x0 x6 (f482f.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..))) (f482f.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (2b2e3.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) = x0 x1 x2 x3 x4 x5.
Apply H0 with
f482f.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..)),
f482f.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..))),
2b2e3.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))),
2b2e3.. (f482f.. (dd5e6.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) leaving 4 subgoals.
The subproof is completed by applying unknownprop_5c0dfa81d135413630d40198f380b99880d733daeee8e129b4a5d28d7d207083 with x1, x2, x3, x4, x5.
The subproof is completed by applying unknownprop_9a2968cd6fb30108e6f9e7f55ebbd94ee83065a46958e63af2137d297ff71f1e with x1, x2, x3, x4, x5.
Let x6 of type ι be given.
Let x7 of type ι be given.
Apply unknownprop_5cb8388f483d51e46bdfc58663301ae218a26e1890aaa5ae374d943cb2c0b71e with
x1,
x2,
x3,
x4,
x5,
x6,
x7,
λ x8 x9 : ο . iff (x4 x6 x7) x8 leaving 3 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying iff_refl with x4 x6 x7.
Let x6 of type ι be given.
Let x7 of type ι be given.
Apply unknownprop_01493f66cd210cbabae1129d96b075b27bb1d5f8be40aad66910afee0cc11964 with
x1,
x2,
x3,
x4,
x5,
x6,
x7,
λ x8 x9 : ο . iff (x5 x6 x7) x8 leaving 3 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying iff_refl with x5 x6 x7.