Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type (ιο) → ο be given.
Let x3 of type (ιο) → ο be given.
Let x4 of type ιο be given.
Let x5 of type ιο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H0: 98165.. x0 x2 x4 x6 x8 = 98165.. x1 x3 x5 x7 x9.
Claim L1: x1 = f482f.. (98165.. x0 x2 x4 x6 x8) 4a7ef..
Apply unknownprop_fa060beed5004aeaf903e37baa1eb6cd4f20ae72d2b2b92763eab92a49d0ec7b with 98165.. x0 x2 x4 x6 x8, x1, x3, x5, x7, x9.
The subproof is completed by applying H0.
Claim L2: x0 = x1
Apply L1 with λ x10 x11 . x0 = x11.
The subproof is completed by applying unknownprop_4446df303565862bba749bc3b3796f1833a33e7c7081a067192379a7c1d64c04 with x0, x2, x4, x6, x8.
Apply and5I with x0 = x1, ∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x0)x2 x10 = x3 x10, ∀ x10 . prim1 x10 x0x4 x10 = x5 x10, x6 = x7, x8 = x9 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ιο be given.
Assume H3: ∀ x11 . x10 x11prim1 x11 x0.
Apply unknownprop_942aa5d8b4e5ee282c21621bfe762ed5c1586eafb0f3bffa1e4e44c94b9c7e56 with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x3 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: ∀ x11 . x10 x11prim1 x11 x1
Apply L2 with λ x11 x12 . ∀ x13 . x10 x13prim1 x13 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_c (f482f.. x12 (4ae4a.. 4a7ef..)) x10 = x3 x10.
Let x11 of type οοο be given.
Apply unknownprop_942aa5d8b4e5ee282c21621bfe762ed5c1586eafb0f3bffa1e4e44c94b9c7e56 with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_70e7ccfbe2faf29b33294498f617cecc17544a6c5bca88f848370cd4de95ea43 with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x5 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. 4a7ef..))) x10 = x5 x10.
Let x11 of type οοο be given.
Apply unknownprop_70e7ccfbe2faf29b33294498f617cecc17544a6c5bca88f848370cd4de95ea43 with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Apply unknownprop_f69656ed661027e20424f9892bdd76c006ab20fc5d7ad4c2ac380a23f2b07cf7 with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x7.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x7.
Let x10 of type ιιο be given.
The subproof is completed by applying unknownprop_f69656ed661027e20424f9892bdd76c006ab20fc5d7ad4c2ac380a23f2b07cf7 with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.
Apply unknownprop_12482a7f3b6d06d949ae831c83e57b0424853f81e2459db4981aead803933efa with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x9.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x9.
Let x10 of type ιιο be given.
The subproof is completed by applying unknownprop_12482a7f3b6d06d949ae831c83e57b0424853f81e2459db4981aead803933efa with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.