Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Apply unknownprop_b456609235d152f08bccfce314d541d7c44f3716137c00b0ce21cf467ba83d17 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))), λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 x5)))), 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))), λ x6 x7 . x7 = x4 leaving 2 subgoals.
The subproof is completed by applying unknownprop_43f6998a149d8de21bb8a03189dc42a81b07339f977b1333c98547b472647d3c.
Apply If_i_0 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4a7ef.., x0, If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. 4a7ef..) x1 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 x5))), λ x6 x7 . x7 = x4 leaving 2 subgoals.
The subproof is completed by applying unknownprop_ad3d8dc286672dabbf45d75a5bddff9246ae99a1b47ead9979d5568de89957bd.
Apply If_i_0 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. 4a7ef.., x1, If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 x5)), λ x6 x7 . x7 = x4 leaving 2 subgoals.
The subproof is completed by applying unknownprop_ac927f2ad247eb36bc322e3579f4429fc5e423f90a2de7867227e2cfdd51eb3e.
Apply If_i_0 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. 4a7ef..), x2, If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 x5), λ x6 x7 . x7 = x4 leaving 2 subgoals.
The subproof is completed by applying unknownprop_c89656f2288520ece9bcd1dc797dc051c5cdc0455848926e17e58cdafcf5fb33.
Apply If_i_0 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)), x3, If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 x5, λ x6 x7 . x7 = x4 leaving 2 subgoals.
The subproof is completed by applying unknownprop_37ab4afe9499820a5a47721f837a6c564315dfb9c67b9507741e6969ad940e64.
Apply If_i_1 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))), x4, x5.
Let x6 of type ιιο be given.
The subproof is completed by applying H0.