Search for blocks/addresses/...
Proofgold Proof
pf
Assume H0:
∀ x0 x1 x2 .
equip
(
setsum
(
setsum
(
setprod
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
0
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
(
setexp
x1
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setexp
x2
(
binrep
(
Power
(
Power
0
)
)
0
)
)
)
)
)
(
setsum
(
setprod
(
binrep
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
Power
0
)
)
0
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
(
setexp
x1
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setexp
x2
(
Power
(
Power
0
)
)
)
)
)
)
(
setsum
(
setprod
(
binrep
(
Power
(
Power
(
Power
0
)
)
)
(
Power
0
)
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
(
setexp
x1
(
binrep
(
Power
(
Power
0
)
)
0
)
)
x2
)
)
)
(
setsum
(
setprod
(
binrep
(
Power
(
Power
0
)
)
0
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setexp
x1
(
binrep
(
Power
(
Power
0
)
)
0
)
)
)
)
(
setsum
(
setprod
(
binrep
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
Power
(
Power
0
)
)
)
(
Power
0
)
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
(
setexp
x1
(
Power
(
Power
0
)
)
)
(
setexp
x2
(
binrep
(
Power
(
Power
0
)
)
0
)
)
)
)
)
(
setsum
(
setprod
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
0
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setexp
x1
(
Power
(
Power
0
)
)
)
)
)
(
setsum
(
setprod
(
binrep
(
Power
(
Power
(
Power
0
)
)
)
0
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
x1
(
setexp
x2
(
binrep
(
Power
(
Power
0
)
)
0
)
)
)
)
)
(
setsum
(
setprod
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
0
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
x1
(
setexp
x2
(
Power
(
Power
0
)
)
)
)
)
)
(
setsum
(
setprod
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
(
setexp
x0
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
setprod
x1
x2
)
)
)
(
setsum
(
setprod
(
Power
...
)
...
)
...
)
)
)
)
)
)
)
)
)
)
...
)
...
⟶
False
.
...
■