Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: x0SNoS_ (ordsucc omega).
Assume H1: SNoLt (minus_SNo omega) x0.
Assume H2: SNo x0.
Assume H3: not (∀ x1 . x1omega∃ x2 . and (x2SNoS_ omega) (and (SNoLt x2 x0) (SNoLt x0 (add_SNo x2 (eps_ x1))))).
Assume H4: nIn x0 (SNoS_ omega).
Assume H5: ∀ x1 . nat_p x1∃ x2 . and (x2SNoS_ omega) (and (SNoLt x2 x0) (SNoLt x0 (add_SNo x2 (eps_ x1)))).
Apply H3.
Let x1 of type ι be given.
Assume H6: x1omega.
Apply H5 with x1.
Apply omega_nat_p with x1.
The subproof is completed by applying H6.