Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: ∀ x1 . x0 x1struct_u x1.
Assume H1: ∀ x1 x2 . x0 x1x0 x2x0 (5a1fb.. x1 x2).
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H2: x0 x1.
Assume H3: x0 x2.
Apply H0 with x1, λ x3 . (λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (UnaryFuncHom x6 x4 x7) (UnaryFuncHom x6 x5 x8)) (∀ x10 . x0 x10∀ x11 x12 . UnaryFuncHom x10 x4 x11UnaryFuncHom x10 x5 x12and (and (and (UnaryFuncHom x10 x6 (x9 x10 x11 x12)) (struct_comp x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (struct_comp x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . UnaryFuncHom x10 x6 x13struct_comp x10 x6 x4 x7 x13 = x11struct_comp x10 x6 x5 x8 x13 = x12x13 = x9 x10 x11 x12))) x3 x2 (5a1fb.. x3 x2) (lam (setprod (ap x3 0) (ap x2 0)) (λ x4 . ap x4 0)) (lam (setprod (ap x3 0) (ap x2 0)) (λ x4 . ap x4 1)) (λ x4 x5 x6 . lam (ap x4 0) (λ x7 . lam 2 (λ x8 . If_i (x8 = 0) (ap x5 x7) (ap x6 x7)))), and (and (and (and (and (x0 x1) (x0 x2)) (x0 (5a1fb.. x1 x2))) (UnaryFuncHom (5a1fb.. x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)))) (UnaryFuncHom (5a1fb.. x1 x2) x2 (lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)))) (∀ x3 . ...∀ x4 x5 . ......and (and (and (UnaryFuncHom x3 (5a1fb.. x1 x2) ((λ x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9)))) x3 x4 x5)) (struct_comp x3 (5a1fb.. x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x6 . ap x6 0)) ((λ x6 x7 x8 . lam (ap x6 0) ...) ... ... ...) = ...)) ...) ...) leaving 3 subgoals.
...
...
...