Let x0 of type ι → ι → ο be given.
Assume H0: ∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1.
Assume H1:
not (or (∃ x1 . and (x1 ⊆ u9) (and (equip u3 x1) (∀ x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ x0 x2 x3))) (∃ x1 . and (x1 ⊆ u9) (and (equip u4 x1) (∀ x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ not (x0 x2 x3))))).
Let x1 of type ι be given.
Let x2 of type ο be given.
Assume H3:
∀ x3 . x3 ∈ u9 ⟶ ∀ x4 . x4 ∈ u9 ⟶ ∀ x5 . x5 ∈ u9 ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x4 = x5 ⟶ ∀ x6 : ο . x6) ⟶ x0 x1 x3 ⟶ x0 x1 x4 ⟶ x0 x1 x5 ⟶ x2.
Apply dneg with
x2.
Apply L5 with
False.
Let x3 of type ι be given.
Apply H6 with
False.
Apply H8 with
False.
Apply H9 with
(∀ x4 . x4 ∈ u9 ⟶ x0 x1 x4 ⟶ nIn x4 x3) ⟶ False.
Assume H12:
∀ x4 . x4 ∈ u9 ⟶ x0 x1 x4 ⟶ nIn x4 x3.
Apply L13 with
x0,
False leaving 3 subgoals.
The subproof is completed by applying H0.
Assume H14:
∃ x4 . and (x4 ⊆ x3) (and (equip u3 x4) (∀ x5 . x5 ∈ x4 ⟶ ∀ x6 . x6 ∈ x4 ⟶ (x5 = x6 ⟶ ∀ x7 : ο . x7) ⟶ x0 x5 x6)).
Apply H14 with
False.
Let x4 of type ι be given.
Assume H15:
(λ x5 . and (x5 ⊆ x3) (and (equip u3 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x0 x6 x7))) x4.
Apply H15 with
False.
Assume H16: x4 ⊆ ....