Let x0 of type ι → ο be given.
Let x1 of type ι → ι → ι → ο be given.
Let x2 of type ι → ι be given.
Let x3 of type ι → ι → ι → ι → ι → ι be given.
Let x4 of type ι → ο be given.
Let x5 of type ι → ι → ι → ο be given.
Let x6 of type ι → ι be given.
Let x7 of type ι → ι → ι → ι → ι → ι be given.
Let x8 of type ι → ι be given.
Let x9 of type ι → ι → ι → ι be given.
Let x10 of type ι → ι be given.
Let x11 of type ι → ι → ι → ι be given.
Let x12 of type ι → ι be given.
Let x13 of type ι → ι be given.
Assume H0:
MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13.
The subproof is completed by applying H0.