Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Apply explicit_Reals_E with
x0,
x1,
x2,
x3,
x4,
x5,
(∀ x7 . ... ⟶ ∀ x8 . ... ∈ ... ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ((λ x9 x10 . x6 (x3 (x4 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x9) ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x10)) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x13 = x6 x14 x15)))) x11) x12))) x9) ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x13 = x6 x14 x15)))) x11) x12))) x10)))) (x3 (x4 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x9) ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x13 = x6 x14 x15)))) x11) x12))) x10)) (x4 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x13 = x6 x14 x15)))) x11) x12))) x9) ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x10)))) x7 x8 = x6 x2 x1).