Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Apply explicit_Reals_E with x0, x1, x2, x3, x4, x5, (∀ x7 . ...∀ x8 . ......∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ((λ x9 x10 . x6 (x3 (x4 ((λ x11 . prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x11 = x6 x12 x13)))) x9) ((λ x11 . prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x11 = x6 x12 x13)))) x10)) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 ((λ x11 . prim0 (λ x12 . and (x12x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x13 = x6 x14 x15)))) x11) x12))) x9) ((λ x11 . prim0 (λ x12 . and (x12x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x13 = x6 x14 x15)))) x11) x12))) x10)))) (x3 (x4 ((λ x11 . prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x11 = x6 x12 x13)))) x9) ((λ x11 . prim0 (λ x12 . and (x12x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x13 = x6 x14 x15)))) x11) x12))) x10)) (x4 ((λ x11 . prim0 (λ x12 . and (x12x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x13 = x6 x14 x15)))) x11) x12))) x9) ((λ x11 . prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x11 = x6 x12 x13)))) x10)))) x7 x8 = x6 x2 x1).
...