Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Assume H0:
62ee1.. x0 x1 x2 x3 x4 x5.
Assume H1:
∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10).
Assume H2:
∀ x7 . prim1 x7 x0 ⟶ x6 x7 x1 = x7.
Apply unknownprop_10769a743c689d03c3422314711adc96cba06eb8031e9bf3cae7a8a8f6fde71f with
x0,
x1,
x2,
x3,
x4,
x5,
x6,
and (and (and (and (and (and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 ((λ x8 . prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))) x7) x1) (λ x7 . x6 ((λ x8 . prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 ((λ x10 . prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x10 = x6 x11 x12)))) x8) x9))) x7) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 ((λ x9 . prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11)))) x7) ((λ x9 . prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11)))) x8)) (x3 ((λ x9 . prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x9) x10))) x7) ((λ x9 . prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x9) x10))) x8))) (λ x7 x8 . x6 (x3 (x4 ((λ x9 . prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11)))) x7) ((λ x9 . prim0 (λ x10 . and (prim1 ... ...) ...)) ...)) ...) ...)) ...) ...) ...) ...) ...) ... leaving 3 subgoals.