leaving 2 subgoals.
Let x0 of type ι be given.
Assume H1:
∀ x1 . equip x0 x1 ⟶ (∀ x2 . x2 ∈ x1 ⟶ ordinal x2) ⟶ ∃ x2 : ι → ι . and (inj x0 x1 x2) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x3 ⟶ x2 x4 ∈ x2 x3).
Let x1 of type ι be given.
Assume H3:
∀ x2 . x2 ∈ x1 ⟶ ordinal x2.
Apply H2 with
∃ x2 : ι → ι . and (inj (ordsucc x0) x1 x2) (∀ x3 . x3 ∈ ordsucc x0 ⟶ ∀ x4 . x4 ∈ x3 ⟶ x2 x4 ∈ x2 x3).
Let x2 of type ι → ι be given.
Apply H4 with
∃ x3 : ι → ι . and (inj (ordsucc x0) x1 x3) (∀ x4 . x4 ∈ ordsucc x0 ⟶ ∀ x5 . x5 ∈ x4 ⟶ x3 x5 ∈ x3 x4).
Assume H5:
and (∀ x3 . x3 ∈ ordsucc x0 ⟶ x2 x3 ∈ x1) (∀ x3 . ... ⟶ ∀ x4 . ... ⟶ x2 x3 = ... ⟶ x3 = x4).