Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNo x1.
Apply unknownprop_909c4bbc49234990ae4796a77dae45da4e74d98f1a4117290a493db105a3b619 with x0, x1, ∀ x2 : ο . (∀ x3 . SNo x3In (SNoLev x3) (binintersect (SNoLev x0) (SNoLev x1))SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0In (SNoLev x3) x1x2)(In (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x0) x0 x1In (SNoLev x0) x1x2)(In (SNoLev x1) (SNoLev x0)SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2.
Assume H2: PNoLt (SNoLev x0) (λ x2 . In x2 x0) (SNoLev x1) (λ x2 . In x2 x1).
Let x2 of type ο be given.
Assume H3: ∀ x3 . SNo x3In (SNoLev x3) (binintersect (SNoLev x0) (SNoLev x1))SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0In (SNoLev x3) x1x2.
Assume H4: In (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x0) x0 x1In (SNoLev x0) x1x2.
Assume H5: In (SNoLev x1) (SNoLev x0)SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2.
Claim L6: ...
...
Claim L7: ...
...
Apply unknownprop_7d798c5794ed96c61cc9ec828963a5831eee43021e8f1ea48be05a5cb53904e0 with SNoLev x0, SNoLev x1, λ x3 . In x3 x0, λ x3 . In x3 x1, x2 leaving 4 subgoals.
The subproof is completed by applying H2.
Assume H8: PNoLt_ (binintersect (SNoLev x0) (SNoLev x1)) (λ x3 . In x3 x0) (λ x3 . In x3 x1).
Apply unknownprop_ff2db5d7cd089ead6d3f23ab1904a643f023d611ddbe42c5c85e87e080e26158 with binintersect (SNoLev x0) (SNoLev x1), λ x3 . In x3 x0, λ x3 . In x3 x1, x2 leaving 2 subgoals.
The subproof is completed by applying H8.
Let x3 of type ι be given.
Assume H9: In x3 (binintersect (SNoLev x0) (SNoLev x1)).
Assume H10: PNoEq_ x3 (λ x4 . In x4 x0) (λ x4 . In x4 x1).
Assume H11: not (In x3 x0).
Assume H12: In x3 x1.
Apply unknownprop_9f9c1680d203bdbb862d1bf6c2b8504d7e3a6fca72f77bd8968e86ad6ad69346 with SNoLev x0, SNoLev x1, x3, x2 leaving 2 subgoals.
The subproof is completed by applying H9.
Assume H13: In x3 (SNoLev x0).
Assume H14: In x3 (SNoLev x1).
Claim L15: ...
...
Claim L16: ...
...
Claim L17: ...
...
Apply unknownprop_97c7da29e9595b010ed33a7cba4535d53c32ea3bcafdf9fb46c420ab4230017e with PSNo x3 (λ x4 . In x4 x0), x2 leaving 2 subgoals.
The subproof is completed by applying L17.
Assume H18: ordinal (SNoLev (PSNo x3 (λ x4 . In x4 ...))).
...
...
...