Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Apply H0 with
explicit_Reals
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
.
Assume H1:
struct_b_b_r_e_e
x0
.
Apply RealsStruct_eta with
x0
,
λ x1 x2 .
unpack_b_b_r_e_e_o
x2
(
λ x3 .
λ x4 x5 :
ι →
ι → ι
.
λ x6 :
ι →
ι → ο
.
λ x7 x8 .
explicit_Reals
x3
x7
x8
x4
x5
x6
)
⟶
explicit_Reals
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
leaving 2 subgoals.
The subproof is completed by applying H0.
Apply RealsStruct_unpack_eq with
field0
x0
,
field1b
x0
,
field2b
x0
,
RealsStruct_leq
x0
,
field4
x0
,
RealsStruct_one
x0
,
λ x1 x2 : ο .
x2
⟶
explicit_Reals
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
.
Assume H2:
explicit_Reals
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
.
The subproof is completed by applying H2.
■