Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: RealsStruct x0.
Apply H0 with explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0).
Assume H1: struct_b_b_r_e_e x0.
Apply RealsStruct_eta with x0, λ x1 x2 . unpack_b_b_r_e_e_o x2 (λ x3 . λ x4 x5 : ι → ι → ι . λ x6 : ι → ι → ο . λ x7 x8 . explicit_Reals x3 x7 x8 x4 x5 x6)explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0) leaving 2 subgoals.
The subproof is completed by applying H0.
Apply RealsStruct_unpack_eq with field0 x0, field1b x0, field2b x0, RealsStruct_leq x0, field4 x0, RealsStruct_one x0, λ x1 x2 : ο . x2explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0).
Assume H2: explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0).
The subproof is completed by applying H2.