Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: x0 1.
Assume H1: x0 omega.
Claim L2: ...
...
Claim L3: ...
...
Apply and5I with MetaCat_terminal_p x0 HomSet (λ x1 . lam_id x1) (λ x1 x2 x3 x4 x5 . lam_comp x1 x4 x5) 1 (λ x1 . lam x1 (λ x2 . 0)), x0 omega, HomSet 1 omega (lam 1 (λ x1 . 0)), HomSet omega omega (lam omega (λ x1 . ordsucc x1)), ∀ x1 x2 x3 . x0 x1HomSet 1 x1 x2HomSet x1 x1 x3and (and (and (HomSet omega x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3)) ((λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8) 1 omega x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3) (lam 1 (λ x4 . 0)) = x2)) ((λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8) omega omega x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3) (lam omega (λ x4 . ordsucc x4)) = (λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8) omega x1 x1 x3 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3))) (∀ x4 . HomSet omega x1 x4(λ x5 x6 x7 x8 x9 . lam_comp x5 x8 x9) 1 omega x1 x4 (lam 1 (λ x5 . 0)) = x2(λ x5 x6 x7 x8 x9 . lam_comp x5 x8 x9) omega omega x1 x4 (lam omega (λ x5 . ordsucc x5)) = (λ x5 x6 x7 x8 x9 . lam_comp x5 x8 x9) omega x1 x1 x3 x4x4 = (λ x5 x6 x7 . lam omega (λ x8 . nat_primrec (ap x6 0) (λ x9 x10 . ap x7 x10) x8)) x1 x2 x3) leaving 5 subgoals.
Apply unknownprop_c631805605639f54c3b6adaa8399cc634c2b0463b565cc1047a5bbf1a7fef49e with x0.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Apply lam_Pi with 1, λ x1 . omega, λ x1 . 0.
Let x1 of type ι be given.
Assume H4: x11.
The subproof is completed by applying L3.
Apply lam_Pi with omega, λ x1 . omega, λ x1 . ordsucc x1.
Let x1 of type ι be given.
Assume H4: x1omega.
Apply omega_ordsucc with x1.
The subproof is completed by applying H4.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H4: x0 x1.
Assume H5: x2setexp x1 1.
Assume H6: x3setexp ... ....
...