Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type (ι → ο) → ο be given.
Let x3 of type (ι → ο) → ο be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ο be given.
Let x7 of type ι → ο be given.
Apply unknownprop_25c4dac4a776c072d901ea169792c5e2271203a3819326f00804b5204952155b with
30bff.. x0 x2 x4 x6,
x1,
x3,
x5,
x7.
The subproof is completed by applying H0.
Claim L2: x0 = x1
Apply L1 with
λ x8 x9 . x0 = x9.
The subproof is completed by applying unknownprop_53a1434582c46791d97bf0b29daf1e96260f65f75da341b82fe60b82f00728d7 with x0, x2, x4, x6.
Apply and4I with
x0 = x1,
∀ x8 : ι → ο . (∀ x9 . x8 x9 ⟶ prim1 x9 x0) ⟶ x2 x8 = x3 x8,
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x4 x8 x9 = x5 x8 x9,
∀ x8 . prim1 x8 x0 ⟶ x6 x8 = x7 x8 leaving 4 subgoals.
The subproof is completed by applying L2.
Let x8 of type ι → ο be given.
Assume H3:
∀ x9 . x8 x9 ⟶ prim1 x9 x0.
Apply unknownprop_7708a5a648779c332bd616f6e4513a6548347153ed171f25a7c039b600789f31 with
x0,
x2,
x4,
x6,
x8,
λ x9 x10 : ο . x10 = x3 x8 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4:
∀ x9 . x8 x9 ⟶ prim1 x9 x1
Apply L2 with
λ x9 x10 . ∀ x11 . x8 x11 ⟶ prim1 x11 x9.
The subproof is completed by applying H3.
Apply H0 with
λ x9 x10 . decode_c (f482f.. x10 (4ae4a.. 4a7ef..)) x8 = x3 x8.
Let x9 of type ο → ο → ο be given.
Apply unknownprop_7708a5a648779c332bd616f6e4513a6548347153ed171f25a7c039b600789f31 with
x1,
x3,
x5,
x7,
x8,
λ x10 x11 : ο . x9 x11 x10.
The subproof is completed by applying L4.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply unknownprop_580e8f89400098eafc477e78627cca2cb91e5401e413a05dcb445fa113c00c84 with
x0,
x2,
x4,
x6,
x8,
x9,
λ x10 x11 : ο . x11 = x5 x8 x9 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with
λ x10 x11 . prim1 x8 x10.
The subproof is completed by applying H3.
Apply L2 with
λ x10 x11 . prim1 x9 x10.
The subproof is completed by applying H4.
Apply H0 with
λ x10 x11 . 2b2e3.. (f482f.. x11 (4ae4a.. (4ae4a.. 4a7ef..))) x8 x9 = x5 x8 x9.
Let x10 of type ο → ο → ο be given.
Apply unknownprop_580e8f89400098eafc477e78627cca2cb91e5401e413a05dcb445fa113c00c84 with
x1,
x3,
x5,
x7,
x8,
x9,
λ x11 x12 : ο . x10 x12 x11 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x8 of type ι be given.
Apply unknownprop_26c09a5fb4cb36f7b0ddea94b180a8c22b92587770fba43cdead9a6362679f2e with
x0,
x2,
x4,
x6,
x8,
λ x9 x10 : ο . x10 = x7 x8 leaving 2 subgoals.
The subproof is completed by applying H3.
Apply L2 with
λ x9 x10 . prim1 x8 x9.
The subproof is completed by applying H3.
Apply H0 with
λ x9 x10 . decode_p (f482f.. x10 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x8 = x7 x8.
Let x9 of type ο → ο → ο be given.
Apply unknownprop_26c09a5fb4cb36f7b0ddea94b180a8c22b92587770fba43cdead9a6362679f2e with
x1,
x3,
x5,
x7,
x8,
λ x10 x11 : ο . x9 x11 x10.
The subproof is completed by applying L4.