pf |
---|
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply unknownprop_7f04e4e3e866c7d2344cfd2d751519732676a67a854e408d66db25d805444000 with 0d9e7.. x0 x2 x4 x6 x8, x1, x3, x5, x7, x9.
The subproof is completed by applying H0.
Claim L2: x0 = x1
Apply L1 with λ x10 x11 . x0 = x11.
The subproof is completed by applying unknownprop_e30283de5e06c43feeedf7ea28f31302b2b9c54b266fa07d32b4a8647937baf2 with x0, x2, x4, x6, x8.
Apply and5I with x0 = x1, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x2 x10 x11 = x3 x10 x11, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x4 x10 x11 = x5 x10 x11, x6 = x7, x8 = x9 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_bf3a81e508dd5bb7ebd0d922aa476a754ab01577312522215ed550d7a6c72b06 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 : ο . x13 = x3 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . 2b2e3.. (f482f.. x13 (4ae4a.. 4a7ef..)) x10 x11 = x3 x10 x11.
Let x12 of type ο → ο → ο be given.
Apply unknownprop_bf3a81e508dd5bb7ebd0d922aa476a754ab01577312522215ed550d7a6c72b06 with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 : ο . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_d478b39a50d95c7bfa6335b02cb600d8bcf61e1565ccfaa353e4998231071c0e with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 : ο . x13 = x5 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . 2b2e3.. (f482f.. x13 (4ae4a.. (4ae4a.. 4a7ef..))) x10 x11 = x5 x10 x11.
Let x12 of type ο → ο → ο be given.
Apply unknownprop_d478b39a50d95c7bfa6335b02cb600d8bcf61e1565ccfaa353e4998231071c0e with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 : ο . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Apply unknownprop_a74292f97535bb6becd1b270890a3d3a46394d140b4094c8913e6d9ae8b70b41 with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x7.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x7.
Let x10 of type ι → ι → ο be given.
The subproof is completed by applying unknownprop_a74292f97535bb6becd1b270890a3d3a46394d140b4094c8913e6d9ae8b70b41 with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.
Apply unknownprop_5375e18e6b66f3447ee2d8a0cd062eefda6605eebcb4137b7f34fa84355c3421 with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x9.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x9.
Let x10 of type ι → ι → ο be given.
The subproof is completed by applying unknownprop_5375e18e6b66f3447ee2d8a0cd062eefda6605eebcb4137b7f34fa84355c3421 with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.
■
|
|