Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: 80242.. x0.
Assume H1: 80242.. x1.
Let x2 of type ο be given.
Assume H2: ∀ x3 x4 . 02b90.. x3 x4(∀ x5 . prim1 x5 x3∀ x6 : ο . (∀ x7 . prim1 x7 (23e07.. x0)∀ x8 . prim1 x8 (23e07.. x1)x5 = bc82c.. (e6316.. x7 x1) (bc82c.. (e6316.. x0 x8) (f4dc0.. (e6316.. x7 x8)))x6)(∀ x7 . prim1 x7 (5246e.. x0)∀ x8 . prim1 x8 (5246e.. x1)x5 = bc82c.. (e6316.. x7 x1) (bc82c.. (e6316.. x0 x8) (f4dc0.. (e6316.. x7 x8)))x6)x6)(∀ x5 . prim1 x5 (23e07.. x0)∀ x6 . prim1 x6 (23e07.. x1)prim1 (bc82c.. (e6316.. x5 x1) (bc82c.. (e6316.. x0 x6) (f4dc0.. (e6316.. x5 x6)))) x3)(∀ x5 . prim1 x5 (5246e.. x0)∀ x6 . prim1 x6 (5246e.. x1)prim1 (bc82c.. (e6316.. x5 x1) (bc82c.. (e6316.. x0 x6) (f4dc0.. (e6316.. x5 x6)))) x3)(∀ x5 . prim1 x5 x4∀ x6 : ο . (∀ x7 . prim1 x7 (23e07.. x0)∀ x8 . prim1 x8 (5246e.. x1)x5 = bc82c.. (e6316.. x7 x1) (bc82c.. (e6316.. x0 x8) (f4dc0.. (e6316.. x7 x8)))x6)(∀ x7 . prim1 x7 (5246e.. x0)∀ x8 . prim1 x8 (23e07.. x1)x5 = bc82c.. (e6316.. x7 x1) (bc82c.. (e6316.. x0 x8) (f4dc0.. (e6316.. x7 x8)))x6)x6)(∀ x5 . prim1 x5 (23e07.. x0)∀ x6 . prim1 x6 (5246e.. x1)prim1 (bc82c.. (e6316.. x5 x1) (bc82c.. (e6316.. x0 x6) (f4dc0.. (e6316.. x5 x6)))) x4)(∀ x5 . prim1 x5 (5246e.. x0)∀ x6 . prim1 x6 (23e07.. x1)prim1 (bc82c.. (e6316.. x5 x1) (bc82c.. (e6316.. x0 x6) (f4dc0.. (e6316.. x5 x6)))) x4)e6316.. x0 x1 = 02a50.. x3 x4x2.
Apply unknownprop_f4c47e876b581d8d577d2c853ba9f380382521b2987b498decb65a17a2733264 with x0, x1, x2 leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H3: ∀ x5 . ...∀ x6 : ο . ...(∀ x7 . ...∀ x8 . prim1 x8 (5246e.. x1)x5 = bc82c.. (e6316.. x7 x1) (bc82c.. (e6316.. x0 x8) (f4dc0.. (e6316.. x7 x8)))x6)x6.
...