Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: Quasigroup x0.
Apply H0 with ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)(∀ x4 . x4x2bij x2 x2 (λ x5 . x3 x4 x5))(∀ x4 . x4x2bij x2 x2 (λ x5 . x3 x5 x4))x1 (pack_b x2 x3))x1 x0.
Assume H1: struct_b x0.
Apply H1 with λ x1 . unpack_b_o x1 (λ x2 . λ x3 : ι → ι → ι . and (∀ x4 . x4x2bij x2 x2 (x3 x4)) (∀ x4 . x4x2bij x2 x2 (λ x5 . x3 x5 x4)))∀ x2 : ι → ο . (∀ x3 . ∀ x4 : ι → ι → ι . (∀ x5 . x5x3∀ x6 . x6x3x4 x5 x6x3)(∀ x5 . x5x3bij x3 x3 (λ x6 . x4 x5 x6))(∀ x5 . x5x3bij x3 x3 (λ x6 . x4 x6 x5))x2 (pack_b x3 x4))x2 x1.
Let x1 of type ι be given.
Let x2 of type ιιι be given.
Assume H2: ∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x1.
Apply unknownprop_b2167d2837715e11967d084f35fa508acd069640c7a7c47aa3f84dfcaa1371b5 with x1, x2, λ x3 x4 : ο . x4∀ x5 : ι → ο . (∀ x6 . ∀ x7 : ι → ι → ι . (∀ x8 . x8x6∀ x9 . x9x6x7 x8 x9x6)(∀ x8 . x8x6bij x6 x6 (λ x9 . x7 x8 x9))(∀ x8 . x8x6bij x6 x6 (λ x9 . x7 x9 x8))x5 (pack_b x6 x7))x5 (pack_b x1 x2).
Assume H3: and (∀ x3 . x3x1bij x1 x1 (x2 x3)) (∀ x3 . x3x1bij x1 x1 (λ x4 . x2 x4 x3)).
Apply H3 with ∀ x3 : ι → ο . (∀ x4 . ∀ x5 : ι → ι → ι . (∀ x6 . x6x4∀ x7 . x7x4x5 x6 x7x4)(∀ x6 . x6x4bij x4 x4 (λ x7 . x5 x6 x7))(∀ x6 . x6x4bij x4 x4 (λ x7 . x5 x7 x6))x3 (pack_b x4 x5))x3 (pack_b x1 x2).
Assume H4: ∀ x3 . x3x1bij x1 x1 (x2 x3).
Assume H5: ∀ x3 . ...bij x1 x1 ....
...