Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: subfield x0 x1.
Apply subfield_E with x0, x1, Group (Galois_Group x1 x0) leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H1: Field x0.
Assume H2: Field x1.
Assume H3: ap x0 0ap x1 0.
Assume H4: field3 x0 = field3 x1.
Assume H5: field4 x0 = field4 x1.
Assume H6: ∀ x2 . x2ap x0 0∀ x3 . x3ap x0 0field1b x0 x2 x3 = field1b x1 x2 x3.
Assume H7: ∀ x2 . x2ap x0 0∀ x3 . x3ap x0 0field2b x0 x2 x3 = field2b x1 x2 x3.
Apply GroupI with {x2 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x2}, λ x2 x3 . lam (ap x1 0) (λ x4 . ap x2 (ap x3 x4)).
Claim L8: ...
...
Apply and3I with ∀ x2 . x2{x3 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x3}∀ x3 . x3{x4 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x4}lam_comp (ap x1 0) x2 x3{x4 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x4}, ∀ x2 . x2{x3 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x3}∀ x3 . x3{x4 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x4}∀ x4 . x4{x5 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x5}lam_comp (ap x1 0) x2 (lam_comp (ap x1 0) x3 x4) = lam_comp (ap x1 0) (lam_comp (ap x1 0) x2 x3) x4, ∃ x2 . and (x2{x3 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x3}) (and (∀ x3 . x3{x4 ∈ setexp (ap x1 0) (ap x1 0)|Field_automorphism_fixing x1 x0 x4}and (lam_comp (ap x1 0) x2 x3 = x3) (lam_comp (ap x1 0) x3 x2 = x3)) (∀ x3 . ...)) leaving 3 subgoals.
...
...
...