Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: RealsStruct x0.
Apply Field_of_RealsStruct_3 with x0, λ x1 x2 . explicit_Field (field0 x0) x2 (ap (Field_of_RealsStruct x0) 4) (decode_b (ap (Field_of_RealsStruct x0) 1)) (decode_b (ap (Field_of_RealsStruct x0) 2)).
Apply Field_of_RealsStruct_4 with x0, λ x1 x2 . explicit_Field (field0 x0) (field4 x0) x2 (decode_b (ap (Field_of_RealsStruct x0) 1)) (decode_b (ap (Field_of_RealsStruct x0) 2)).
Apply unknownprop_020ff441acf63956db89023138d2e3bf192b2578e8bfb819c9422a66b469b129 with field0 x0, field4 x0, RealsStruct_one x0, field1b x0, field2b x0, decode_b (ap (Field_of_RealsStruct x0) 1), decode_b (ap (Field_of_RealsStruct x0) 2) leaving 3 subgoals.
Let x1 of type ι be given.
Assume H1: x1field0 x0.
Let x2 of type ι be given.
Assume H2: x2field0 x0.
Apply pack_b_b_e_e_1_eq2 with field0 x0, field1b x0, field2b x0, field4 x0, RealsStruct_one x0, x1, x2 leaving 2 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
Let x1 of type ι be given.
Assume H1: x1field0 x0.
Let x2 of type ι be given.
Assume H2: x2field0 x0.
Apply pack_b_b_e_e_2_eq2 with field0 x0, field1b x0, field2b x0, field4 x0, RealsStruct_one x0, x1, x2 leaving 2 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
Apply explicit_Field_of_RealsStruct with x0.
The subproof is completed by applying H0.