Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιιο be given.
Assume H0: ∀ x1 x2 x3 . SNo x1SNo x2SNo x3(∀ x4 . x4SNoS_ (SNoLev x1)x0 x4 x2 x3)(∀ x4 . x4SNoS_ (SNoLev x2)x0 x1 x4 x3)(∀ x4 . x4SNoS_ (SNoLev x3)x0 x1 x2 x4)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x2)x0 x4 x5 x3)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x3)x0 x4 x2 x5)(∀ x4 . x4SNoS_ (SNoLev x2)∀ x5 . x5SNoS_ (SNoLev x3)x0 x1 x4 x5)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x2)∀ x6 . x6SNoS_ (SNoLev x3)x0 x4 x5 x6)x0 x1 x2 x3.
Claim L1: ∀ x1 . ordinal x1∀ x2 . ordinal x2∀ x3 . ordinal x3∀ x4 . x4SNoS_ x1∀ x5 . x5SNoS_ x2∀ x6 . x6SNoS_ x3x0 x4 x5 x6
Apply ordinal_ind with λ x1 . ∀ x2 . ordinal x2∀ x3 . ordinal x3∀ x4 . x4SNoS_ x1∀ x5 . x5SNoS_ x2∀ x6 . x6SNoS_ x3x0 x4 x5 x6.
Let x1 of type ι be given.
Assume H1: ordinal x1.
Assume H2: ∀ x2 . x2x1∀ x3 . ordinal x3∀ x4 . ordinal x4∀ x5 . x5SNoS_ x2∀ x6 . x6SNoS_ x3∀ x7 . x7SNoS_ x4x0 x5 x6 x7.
Apply ordinal_ind with λ x2 . ∀ x3 . ordinal x3∀ x4 . x4SNoS_ x1∀ x5 . x5SNoS_ x2∀ x6 . x6SNoS_ x3x0 x4 x5 x6.
Let x2 of type ι be given.
Assume H3: ordinal x2.
Assume H4: ∀ x3 . x3x2∀ x4 . ordinal x4∀ x5 . x5SNoS_ x1∀ x6 . x6SNoS_ x3∀ x7 . x7SNoS_ x4x0 x5 x6 x7.
Apply ordinal_ind with λ x3 . ∀ x4 . ...∀ x5 . x5...∀ x6 . x6SNoS_ x3x0 x4 x5 x6.
...
Apply SNo_ordinal_ind3 with x0.
The subproof is completed by applying L1.