Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type (ιο) → ο be given.
Assume H0: ∀ x1 : ι → ο . (λ x2 : ι → ο . ∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4x3 ((λ x5 : ι → ο . λ x6 . and (x5 x6) (x6 = prim0 (λ x7 . x5 x7)∀ x7 : ο . x7)) x4))(∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . x4 x5x3 x5)x3 (Descr_Vo1 x4))x3 x2) x1x0 x1x0 ((λ x2 : ι → ο . λ x3 . and (x2 x3) (x3 = prim0 (λ x4 . x2 x4)∀ x4 : ο . x4)) x1).
Assume H1: ∀ x1 : (ι → ο) → ο . (∀ x2 : ι → ο . x1 x2∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4x3 ((λ x5 : ι → ο . λ x6 . and (x5 x6) (x6 = prim0 (λ x7 . x5 x7)∀ x7 : ο . x7)) x4))(∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . x4 x5x3 x5)x3 (Descr_Vo1 x4))x3 x2)(∀ x2 : ι → ο . x1 x2x0 x2)x0 (Descr_Vo1 x1).
Let x1 of type ιο be given.
Assume H2: (λ x2 : ι → ο . ∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4x3 ((λ x5 : ι → ο . λ x6 . and (x5 x6) (x6 = prim0 (λ x7 . x5 x7)∀ x7 : ο . x7)) x4))(∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . x4 x5x3 x5)x3 (Descr_Vo1 x4))x3 x2) x1.
Claim L3: and ((λ x2 : ι → ο . ∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4x3 ((λ x5 : ι → ο . λ x6 . and (x5 x6) (x6 = prim0 (λ x7 . x5 x7)∀ x7 : ο . x7)) x4))(∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . x4 x5x3 x5)x3 (Descr_Vo1 x4))x3 x2) x1) (x0 x1)
Apply H2 with λ x2 : ι → ο . and ((λ x3 : ι → ο . ∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . x4 x5x4 ((λ x6 : ι → ο . λ x7 . and (x6 x7) (x7 = prim0 (λ x8 . x6 x8)∀ x8 : ο . x8)) x5))(∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . x5 x6x4 x6)x4 (Descr_Vo1 x5))x4 x3) x2) (x0 x2) leaving 2 subgoals.
Let x2 of type ιο be given.
Assume H3: and ((λ x3 : ι → ο . ∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . ...x4 ((λ x6 : ι → ο . λ x7 . and (x6 x7) (...∀ x8 : ο . x8)) ...))(∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . x5 x6x4 x6)x4 (Descr_Vo1 x5))x4 x3) ...) ....
...
...
Apply L3 with x0 x1.
Assume H4: ∀ x2 : (ι → ο) → ο . (∀ x3 : ι → ο . x2 x3x2 (λ x4 . and (x3 x4) (x4 = prim0 (λ x5 . x3 x5)∀ x5 : ο . x5)))(∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4x2 x4)x2 (Descr_Vo1 x3))x2 x1.
Assume H5: x0 x1.
The subproof is completed by applying H5.