Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Claim L1: ...
...
Claim L2: ...
...
Claim L3: ...
...
Claim L4: ...
...
Let x0 of type ιο be given.
Let x1 of type ιιο be given.
Let x2 of type ιι be given.
Let x3 of type ιι be given.
Let x4 of type ιιο be given.
Let x5 of type ιιιι be given.
Let x6 of type ιιι be given.
Let x7 of type ιο be given.
Let x8 of type ιιο be given.
Let x9 of type ιι be given.
Let x10 of type ιι be given.
Let x11 of type ιι be given.
Let x12 of type ι be given.
Let x13 of type ι be given.
Let x14 of type ι be given.
Let x15 of type ι be given.
Let x16 of type ι be given.
Let x17 of type ιο be given.
Let x18 of type ιι be given.
Let x19 of type ιι be given.
Let x20 of type ιιι be given.
Let x21 of type ιιο be given.
Assume H5: ∀ x22 x23 x24 . x21 x23 x24(x21 (x20 x23 x22) (x20 x24 x22)False)False.
Assume H6: ∀ x22 x23 x24 . x0 x24x7 x24x1 x23 (x2 (x3 x24))x1 x22 (x2 (x3 x24))x4 x22 x24(x21 (x6 x24 (x5 (x3 x24) x22 x23)) (x5 (x3 x24) x22 (x6 x24 x23))False)False.
Assume H7: ∀ x22 x23 . x21 x23 x22(x1 x23 (x2 x22)False)False.
Assume H8: ∀ x22 x23 . x1 x23 (x2 x22)(x21 x23 x22False)False.
Assume H9: ∀ x22 x23 x24 . x7 x24x1 x22 (x2 (x3 x24))x1 x23 (x2 (x3 x24))x21 x22 x23(x21 (x6 x24 x22) (x6 x24 x23)False)False.
Assume H10: ∀ x22 x23 . x7 x23x1 x22 (x2 (x3 x23))(x21 (x6 x23 x22) x22False)False.
Assume H11: ∀ x22 . (x21 x22 x22False)False.
Assume H12: ∀ x22 x23 x24 . x1 x23 (x2 x24)x1 x22 (x2 x24)(x5 x24 x23 x22 = x20 x23 x22False)False.
Assume H13: ∀ x22 . x0 x22x7 x22(x4 (x19 x22) x22False)False.
Assume H14: ∀ x22 . x0 x22x7 x22(x1 (x19 x22) (x2 (x3 x22))False)False.
Assume H15: ∀ x22 . x0 x22x7 x22(x4 (x18 x22) x22False)False.
Assume H16: ∀ x22 . x0 x22x7 x22(x8 (x18 x22) x22False)False.
Assume H17: ∀ x22 . x0 x22x7 x22(x1 (x18 x22) (x2 (x3 x22))False)False.
Assume H18: ∀ x22 . x0 x22x7 x22(x8 (x9 x22) x22False)False.
Assume H19: ∀ x22 . x0 x22x7 x22(x1 (x9 x22) (x2 (x3 x22))False)False.
Assume H20: ∀ x22 . x0 x22x7 x22(x8 (x10 x22) x22False)False.
Assume H21: ∀ x22 . ......(x1 (x10 ...) ...False)False.
...