Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
Field
x0
.
Apply explicit_Field_E with
K_field_0
x0
x0
,
K_field_3
x0
x0
,
K_field_4
x0
x0
,
K_field_1_b
x0
x0
,
K_field_2_b
x0
x0
,
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
∀ x2 .
x2
∈
K_field_0
x0
x0
⟶
∀ x3 .
x3
∈
K_field_0
x0
x0
⟶
K_field_2_b
x0
x0
x1
(
K_field_2_b
x0
x0
x2
x3
)
=
K_field_2_b
x0
x0
(
K_field_2_b
x0
x0
x1
x2
)
x3
leaving 2 subgoals.
Assume H1:
explicit_Field
(
K_field_0
x0
x0
)
(
K_field_3
x0
x0
)
(
K_field_4
x0
x0
)
(
K_field_1_b
x0
x0
)
(
K_field_2_b
x0
x0
)
.
Assume H2:
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
∀ x2 .
x2
∈
K_field_0
x0
x0
⟶
K_field_1_b
x0
x0
x1
x2
∈
K_field_0
x0
x0
.
Assume H3:
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
∀ x2 .
x2
∈
K_field_0
x0
x0
⟶
∀ x3 .
x3
∈
K_field_0
x0
x0
⟶
K_field_1_b
x0
x0
x1
(
K_field_1_b
x0
x0
x2
x3
)
=
K_field_1_b
x0
x0
(
K_field_1_b
x0
x0
x1
x2
)
x3
.
Assume H4:
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
∀ x2 .
x2
∈
K_field_0
x0
x0
⟶
K_field_1_b
x0
x0
x1
x2
=
K_field_1_b
x0
x0
x2
x1
.
Assume H5:
K_field_3
x0
x0
∈
K_field_0
x0
x0
.
Assume H6:
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
K_field_1_b
x0
x0
(
K_field_3
x0
x0
)
x1
=
x1
.
Assume H7:
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
∃ x2 .
and
(
x2
∈
K_field_0
x0
x0
)
(
K_field_1_b
x0
x0
x1
x2
=
K_field_3
x0
x0
)
.
Assume H8:
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
∀ x2 .
x2
∈
K_field_0
x0
x0
⟶
K_field_2_b
x0
x0
x1
x2
∈
K_field_0
x0
x0
.
Assume H9:
∀ x1 .
x1
∈
K_field_0
x0
x0
⟶
∀ x2 .
x2
∈
K_field_0
x0
x0
⟶
∀ x3 .
x3
∈
K_field_0
x0
x0
⟶
K_field_2_b
x0
x0
x1
(
K_field_2_b
x0
x0
x2
x3
)
=
K_field_2_b
x0
x0
(
K_field_2_b
x0
x0
x1
x2
)
x3
.
Assume H10:
∀ x1 .
...
⟶
∀ x2 .
...
⟶
K_field_2_b
x0
x0
x1
x2
=
K_field_2_b
...
...
...
...
.
...
...
■