Apply L1 with
∃ x0 x1 x2 : ι → ι → ι . ∃ x3 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x0 x1 x2 x3.
Let x0 of type ι → ι → ι be given.
Assume H5:
(λ x1 : ι → ι → ι . ∀ x2 . ∀ x3 : ι → ι . ∀ x4 . ∀ x5 : ι → ι . (∀ x6 . x6 ∈ x4 ⟶ x5 x6 ∈ x4) ⟶ x1 (pack_u x2 x3) (pack_u x4 x5) = pack_u (setprod x2 x4) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (x3 (ap x6 0)) (x5 (ap x6 1))))) x0.
Apply L2 with
∃ x1 x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x2 x3 x4.
Let x1 of type ι → ι → ι be given.
Assume H6:
(λ x2 : ι → ι → ι . ∀ x3 . ∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . x2 (pack_u x3 x4) (pack_u x5 x6) = lam (setprod x3 x5) (λ x7 . ap x7 0)) x1.
Apply L3 with
∃ x2 x3 x4 : ι → ι → ι . ∃ x5 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x2 x3 x4 x5.
Let x2 of type ι → ι → ι be given.
Assume H7:
(λ x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι . x3 (pack_u x4 x5) (pack_u x6 x7) = lam (setprod x4 x6) (λ x8 . ap x8 1)) x2.
Apply L4 with
∃ x3 x4 x5 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x3 x4 x5 x6.
Let x3 of type ι → ι → ι → ι → ι → ι be given.
Assume H8:
(λ x4 : ι → ι → ι → ι → ι → ι . ∀ x5 x6 x7 . ∀ x8 : ι → ι . ∀ x9 x10 . x4 x5 x6 (pack_u x7 x8) x9 x10 = lam x7 (λ x11 . lam 2 (λ x12 . If_i (x12 = 0) (ap x9 x11) (ap x10 x11)))) x3.
Let x4 of type ο be given.
Apply H10 with
x0.
Let x5 of type ο be given.
Apply H11 with
x1.
Let x6 of type ο be given.
Apply H12 with
x2.
Let x7 of type ο be given.
Apply H13 with
x3.
Apply unknownprop_b44bf17b712ca8b63c07a0ba06634caef680b43d449c8c8e8f92a801772b18d9 with
9f253..,
UnaryFuncHom,
struct_id,
struct_comp,
x0,
x1,
x2,
x3.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply H14 with
∀ x10 : ο . (... ⟶ ... ⟶ ... ⟶ (∀ x11 . ... ⟶ ∀ x12 x13 . ... ⟶ ... ⟶ and (and (and (UnaryFuncHom x11 (x0 x8 x9) (x3 x8 x9 x11 x12 x13)) (struct_comp x11 (x0 x8 ...) ... ... ... = ...)) ...) ...) ⟶ x10) ⟶ x10.