Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Claim L1: ...
...
Claim L2: ...
...
Claim L3: ...
...
Claim L4: ...
...
Apply L1 with ∃ x0 x1 x2 : ι → ι → ι . ∃ x3 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x0 x1 x2 x3.
Let x0 of type ιιι be given.
Assume H5: (λ x1 : ι → ι → ι . ∀ x2 . ∀ x3 : ι → ι . ∀ x4 . ∀ x5 : ι → ι . (∀ x6 . x6x4x5 x6x4)x1 (pack_u x2 x3) (pack_u x4 x5) = pack_u (setprod x2 x4) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (x3 (ap x6 0)) (x5 (ap x6 1))))) x0.
Apply L2 with ∃ x1 x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x2 x3 x4.
Let x1 of type ιιι be given.
Assume H6: (λ x2 : ι → ι → ι . ∀ x3 . ∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . x2 (pack_u x3 x4) (pack_u x5 x6) = lam (setprod x3 x5) (λ x7 . ap x7 0)) x1.
Apply L3 with ∃ x2 x3 x4 : ι → ι → ι . ∃ x5 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x2 x3 x4 x5.
Let x2 of type ιιι be given.
Assume H7: (λ x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι . x3 (pack_u x4 x5) (pack_u x6 x7) = lam (setprod x4 x6) (λ x8 . ap x8 1)) x2.
Apply L4 with ∃ x3 x4 x5 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x3 x4 x5 x6.
Let x3 of type ιιιιιι be given.
Assume H8: (λ x4 : ι → ι → ι → ι → ι → ι . ∀ x5 x6 x7 . ∀ x8 : ι → ι . ∀ x9 x10 . x4 x5 x6 (pack_u x7 x8) x9 x10 = lam x7 (λ x11 . lam 2 (λ x12 . If_i (x12 = 0) (ap x9 x11) (ap x10 x11)))) x3.
Claim L9: ...
...
Let x4 of type ο be given.
Assume H10: ∀ x5 : ι → ι → ι . (∃ x6 x7 : ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x5 x6 x7 x8)x4.
Apply H10 with x0.
Let x5 of type ο be given.
Assume H11: ∀ x6 : ι → ι → ι . (∃ x7 : ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x0 x6 x7 x8)x5.
Apply H11 with x1.
Let x6 of type ο be given.
Assume H12: ∀ x7 : ι → ι → ι . (∃ x8 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x0 x1 x7 x8)x6.
Apply H12 with x2.
Let x7 of type ο be given.
Assume H13: ∀ x8 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x0 x1 x2 x8x7.
Apply H13 with x3.
Apply unknownprop_b44bf17b712ca8b63c07a0ba06634caef680b43d449c8c8e8f92a801772b18d9 with 9f253.., UnaryFuncHom, struct_id, struct_comp, x0, x1, x2, x3.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H14: 9f253.. x8.
Assume H15: 9f253.. x9.
Apply H14 with ∀ x10 : ο . (.........(∀ x11 . ...∀ x12 x13 . ......and (and (and (UnaryFuncHom x11 (x0 x8 x9) (x3 x8 x9 x11 x12 x13)) (struct_comp x11 (x0 x8 ...) ... ... ... = ...)) ...) ...)x10)x10.
...