Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιο be given.
Let x2 of type ιιο be given.
Let x3 of type ιο be given.
Let x4 of type ιο be given.
Let x5 of type ι be given.
Assume H0: ∀ x6 . x6x0∀ x7 . x7x0iff (x1 x6 x7) (x2 x6 x7).
Assume H1: ∀ x6 . x6x0iff (x3 x6) (x4 x6).
Claim L2: encode_r x0 x1 = encode_r x0 x2
Apply encode_r_ext with x0, x1, x2.
The subproof is completed by applying H0.
Apply L2 with λ x6 x7 . lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_r x0 x1) (If_i (x8 = 2) (Sep x0 x3) x5))) = lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) x6 (If_i (x8 = 2) (Sep x0 x4) x5))).
Claim L3: Sep x0 x3 = Sep x0 x4
Apply encode_p_ext with x0, x3, x4.
The subproof is completed by applying H1.
Apply L3 with λ x6 x7 . lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_r x0 x1) (If_i (x8 = 2) (Sep x0 x3) x5))) = lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_r x0 x1) (If_i (x8 = 2) x6 x5))).
Let x6 of type ιιο be given.
Assume H4: x6 (lam 4 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) (encode_r x0 x1) (If_i (x7 = 2) (Sep x0 x3) x5)))) (lam 4 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) (encode_r x0 x1) (If_i (x7 = 2) (Sep x0 x3) x5)))).
The subproof is completed by applying H4.