Apply unknownprop_921e165a5e3021bc01faa484e5d01732ec57a2a635de505ac5d0e187102ef29b with
∃ x0 . ∃ x1 : ι → ι . MetaCat_initial_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x0 x1.
Let x0 of type ι → ι be given.
Apply H0 with
∃ x1 . ∃ x2 : ι → ι . MetaCat_initial_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x2.
Let x1 of type ι → ι → ι → ι be given.
Apply H1 with
∃ x2 . ∃ x3 : ι → ι . MetaCat_initial_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x2 x3.
Let x2 of type ι → ι be given.
Apply H2 with
∃ x3 . ∃ x4 : ι → ι . MetaCat_initial_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x3 x4.
Let x3 of type ι → ι be given.
Apply unknownprop_6482952e7e0a4bf00d28fb92ecd380f707bb40e0d65cb44f18a4b021cf4cfdbf with
∃ x4 . ∃ x5 : ι → ι . MetaCat_initial_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x4 x5.
Let x4 of type ι be given.
Apply H4 with
∃ x5 . ∃ x6 : ι → ι . MetaCat_initial_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x5 x6.
Let x5 of type ι → ι be given.
Let x6 of type ο be given.
Apply H6 with
x0 x4.
Apply unknownprop_9e4a4e86d499216c8785bdcb6ea98c9ec4aee7ee82bde465e88bf0a451f2bef0 with
λ x7 . True,
HomSet,
λ x7 . lam_id x7,
λ x7 x8 x9 x10 x11 . lam_comp x7 x10 x11,
IrreflexiveTransitiveReln,
BinRelnHom,
struct_id,
struct_comp,
x0,
x1,
λ x7 . ap x7 0,
λ x7 x8 x9 . x9,
x2,
x3,
x4,
x5 leaving 2 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H5.