Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιο be given.
Let x1 of type ιιο be given.
Let x2 of type ιιο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H0: 6fe8d.. x0 x1 x2 x3 x4.
Apply H0 with λ x5 : ι → ι → ο . λ x6 x7 . ∀ x8 : ι → ι → ο . (∀ x9 x10 . x5 x9 x10x8 x9 x10)6fe8d.. x0 x1 x8 x6 x7 leaving 8 subgoals.
Let x5 of type ιιο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H1: x0 x6 x7.
Let x8 of type ιιο be given.
Assume H2: ∀ x9 x10 . x5 x9 x10x8 x9 x10.
Apply unknownprop_b4b184a5ad8ab7cb69711b8ab4d11a3c932ea336f939eb0fb29d7ee6b1126db2 with x0, x1, x8, x6, x7.
The subproof is completed by applying H1.
Let x5 of type ιιο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H1: x5 x6 x7.
Let x8 of type ιιο be given.
Assume H2: ∀ x9 x10 . x5 x9 x10x8 x9 x10.
Apply unknownprop_7aca69e6f606c7f0af8e81ab1137c8a1a1c6827be962e013714d23f5b9cc82c8 with x0, x1, x8, x6, x7.
Apply H2 with x6, x7.
The subproof is completed by applying H1.
Let x5 of type ιιο be given.
Let x6 of type ιιο be given.
Assume H1: ∀ x7 x8 . x5 x7 x8x6 x7 x8.
The subproof is completed by applying unknownprop_2c6d593894296c84c8495112a34fbf463ff3a0139d6c76449529901af9854967 with x0, x1, x6.
Let x5 of type ιιο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ιι be given.
Assume H1: f6435.. x6.
Assume H2: (λ x9 : ι → ι → ο . λ x10 x11 . ∀ x12 : ι → ι → ο . (∀ x13 x14 . x9 x13 x14x12 x13 x14)6fe8d.. x0 x1 x12 x10 x11) x5 x7 32d20...
Assume H3: ∀ x9 . (λ x10 : ι → ι → ο . λ x11 x12 . ∀ x13 : ι → ι → ο . (∀ x14 x15 . x10 x14 x15x13 x14 x15)6fe8d.. x0 x1 x13 x11 x12) (a603a.. x5 x9 x7) (x8 x9) x6.
Let x9 of type ιιο be given.
Assume H4: ∀ x10 x11 . x5 x10 x11x9 x10 x11.
Apply unknownprop_2e4c9e9bb00a1e00d61dddf5b93521d4a44a5cf34a5d77eca45d066a0b32082a with x0, x1, x9, x6, x7, x8 leaving 3 subgoals.
The subproof is completed by applying H1.
Apply H2 with x9.
The subproof is completed by applying H4.
Let x10 of type ι be given.
Apply H3 with x10, a603a.. x9 x10 x7.
Apply unknownprop_2cf7bc2f5a4dbde4de73cff02382b5f1a3e850236e7d03433e3d2b3d683d34f6 with x5, x9, x10, x7.
The subproof is completed by applying H4.
Let x5 of type ιιο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ιι be given.
Assume H1: (λ x10 : ι → ι → ο . λ x11 x12 . ∀ x13 : ι → ι → ο . (∀ x14 x15 . x10 x14 x15x13 x14 x15)6fe8d.. x0 x1 x13 x11 x12) x5 x6 (d7cf0.. x8 x9).
Assume H2: (λ x10 : ι → ι → ο . λ x11 x12 . ∀ x13 : ι → ι → ο . (∀ x14 x15 . x10 x14 x15x13 x14 x15)6fe8d.. x0 x1 x13 x11 x12) x5 x7 x8.
Let x10 of type ιιο be given.
Assume H3: ∀ x11 x12 . x5 x11 x12x10 x11 x12.
Apply unknownprop_8456f035593e381677ad0ec884ea2dfed6273d70a1e5efa2af3d3eb450e5586f with x0, x1, x10, x6, x7, x8, x9 leaving 2 subgoals.
Apply H1 with x10.
The subproof is completed by applying H3.
Apply H2 with x10.
The subproof is completed by applying H3.
Let x5 of type ιιο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ιι be given.
Let x9 of type ιι be given.
Assume H1: f6435.. x6.
Assume H2: (λ x10 : ι → ι → ο . λ x11 x12 . ∀ x13 : ι → ι → ο . (∀ x14 x15 . x10 x14 x15x13 x14 x15)6fe8d.. x0 x1 x13 x11 x12) x5 (d7cf0.. x7 x9) x6.
Assume H3: ∀ x10 . (λ x11 : ι → ι → ο . λ x12 x13 . ∀ x14 : ι → ι → ο . ...6fe8d.. x0 x1 x14 x12 x13) ... ... ....
...
...
...