Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Let x0 of type ιιιιιιιιιιιιιι be given.
Let x1 of type ιιιιιιιιιιιιιι be given.
Let x2 of type ιιιιιιιιιιιιιι be given.
Let x3 of type ιιιιιιιιιιιιιι be given.
Assume H1: Church13_p x0.
Assume H2: Church13_p x1.
Assume H3: Church13_p x2.
Assume H4: Church13_p x3.
Apply H1 with λ x4 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ((λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) = x4∀ x5 : ο . x5)((λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) = x1∀ x5 : ο . x5)((λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) = x2∀ x5 : ο . x5)((λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) = x3∀ x5 : ο . x5)(x4 = x1∀ x5 : ο . x5)(x4 = x2∀ x5 : ο . x5)(x4 = x3∀ x5 : ο . x5)(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(TwoRamseyGraph_3_5_Church13 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) x4 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) x1 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) x2 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) x3 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 x4 x1 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 x4 x2 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 x4 x3 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 x1 x2 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 x1 x3 = λ x5 x6 . x6)(TwoRamseyGraph_3_5_Church13 x2 x3 = λ x5 x6 . x6)False leaving 13 subgoals.
Assume H5: ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4)∀ x4 : ο . x4.
Apply FalseE with ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x1∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x2∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x3∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x1∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x2∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x3∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x1 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x2 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x3 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x1 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x2 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x3 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 x1 x2 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 x1 x3 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 x2 x3 = λ x4 x5 . x5)False.
Apply H5.
Let x4 of type (ιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιι) → ο be given.
Assume H6: x4 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5).
The subproof is completed by applying H6.
Assume H5: ...∀ x4 : ο . x4.
...
...
...
...
...
...
...
...
...
...
...
...