Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιι be given.
Let x2 of type ιιο be given.
Let x3 of type ι be given.
Assume H0: prim1 x3 (38062.. x0 x1 x2).
Apply unknownprop_d516324acb9cecc54a3dc4c9e001108ae079249b9f74b554177899d61add34ac with x0, x1, x2, x3, ∃ x4 x5 . x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x6 . If_i (x6 = 4a7ef..) x4 x5) leaving 2 subgoals.
The subproof is completed by applying H0.
Let x4 of type ι be given.
Assume H1: (λ x5 . and (prim1 x5 x0) (∃ x6 . and (prim1 x6 (x1 x5)) (and (x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x5 x6)) (x2 x5 x6)))) x4.
Apply H1 with ∃ x5 x6 . x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x5 x6).
Assume H2: prim1 x4 x0.
Assume H3: ∃ x5 . and (prim1 x5 (x1 x4)) (and (x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x6 . If_i (x6 = 4a7ef..) x4 x5)) (x2 x4 x5)).
Apply H3 with ∃ x5 x6 . x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x5 x6).
Let x5 of type ι be given.
Assume H4: (λ x6 . and (prim1 x6 (x1 x4)) (and (x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x4 x6)) (x2 x4 x6))) x5.
Apply H4 with ∃ x6 x7 . x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x8 . If_i (x8 = 4a7ef..) x6 x7).
Assume H5: prim1 x5 (x1 x4).
Assume H6: and (x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x6 . If_i (x6 = 4a7ef..) x4 x5)) (x2 x4 x5).
Apply H6 with ∃ x6 x7 . x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x8 . If_i (x8 = 4a7ef..) x6 x7).
Assume H7: x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x6 . If_i (x6 = 4a7ef..) x4 x5).
Assume H8: x2 x4 x5.
Let x6 of type ο be given.
Assume H9: ∀ x7 . (∃ x8 . x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x9 . If_i (x9 = 4a7ef..) x7 x8))x6.
Apply H9 with x4.
Let x7 of type ο be given.
Assume H10: ∀ x8 . x3 = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x9 . If_i (x9 = 4a7ef..) x4 x8)x7.
Apply H10 with x5.
The subproof is completed by applying H7.