Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιι be given.
Let x2 of type ιιο be given.
Let x3 of type ι be given.
Assume H0: 6100b.. (1bcc7.. x0 x1 x2 x3).
Apply H0 with λ x4 . x4 = 1bcc7.. x0 x1 x2 x3∀ x5 . prim1 x5 x0prim1 (x1 x5) x0 leaving 2 subgoals.
Let x4 of type ι be given.
Let x5 of type ιι be given.
Assume H1: ∀ x6 . prim1 x6 x4prim1 (x5 x6) x4.
Let x6 of type ιιο be given.
Let x7 of type ι be given.
Assume H2: prim1 x7 x4.
Assume H3: 1bcc7.. x4 x5 x6 x7 = 1bcc7.. x0 x1 x2 x3.
Apply unknownprop_b851e7ada034080095d2e71561b6f141e640386127d2274c430f07ddde5df647 with x4, x0, x5, x1, x6, x2, x7, x3, ∀ x8 . prim1 x8 x0prim1 (x1 x8) x0 leaving 2 subgoals.
The subproof is completed by applying H3.
Assume H4: and (and (x4 = x0) (∀ x8 . prim1 x8 x4x5 x8 = x1 x8)) (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9).
Apply H4 with x7 = x3∀ x8 . prim1 x8 x0prim1 (x1 x8) x0.
Assume H5: and (x4 = x0) (∀ x8 . prim1 x8 x4x5 x8 = x1 x8).
Apply H5 with (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9)x7 = x3∀ x8 . prim1 x8 x0prim1 (x1 x8) x0.
Assume H6: x4 = x0.
Assume H7: ∀ x8 . prim1 x8 x4x5 x8 = x1 x8.
Assume H8: ∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9.
Assume H9: x7 = x3.
Apply H6 with λ x8 x9 . ∀ x10 . prim1 x10 x8prim1 (x1 x10) x8.
Let x8 of type ι be given.
Assume H10: prim1 x8 x4.
Apply H7 with x8, λ x9 x10 . prim1 x9 x4 leaving 2 subgoals.
The subproof is completed by applying H10.
Apply H1 with x8.
The subproof is completed by applying H10.
Let x4 of type ιιο be given.
Assume H1: x4 (1bcc7.. x0 x1 x2 x3) (1bcc7.. x0 x1 x2 x3).
The subproof is completed by applying H1.