Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H0: 3f0d0.. (c77b5.. x0 x1 x2 x3 x4).
Apply H0 with λ x5 . x5 = c77b5.. x0 x1 x2 x3 x4prim1 x3 x0 leaving 2 subgoals.
Let x5 of type ι be given.
Let x6 of type ιιι be given.
Assume H1: ∀ x7 . prim1 x7 x5∀ x8 . prim1 x8 x5prim1 (x6 x7 x8) x5.
Let x7 of type ιιι be given.
Assume H2: ∀ x8 . prim1 x8 x5∀ x9 . prim1 x9 x5prim1 (x7 x8 x9) x5.
Let x8 of type ι be given.
Assume H3: prim1 x8 x5.
Let x9 of type ι be given.
Assume H4: prim1 x9 x5.
Assume H5: c77b5.. x5 x6 x7 x8 x9 = c77b5.. x0 x1 x2 x3 x4.
Apply unknownprop_58d4933365baa601cd3e0826dd9bfa7027dbb811c8d28bd63620e674276e2492 with x5, x0, x6, x1, x7, x2, x8, x3, x9, x4, prim1 x3 x0 leaving 2 subgoals.
The subproof is completed by applying H5.
Assume H6: and (and (and (x5 = x0) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x6 x10 x11 = x1 x10 x11)) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x7 x10 x11 = x2 x10 x11)) (x8 = x3).
Apply H6 with x9 = x4prim1 x3 x0.
Assume H7: and (and (x5 = x0) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x6 x10 x11 = x1 x10 x11)) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x7 x10 x11 = x2 x10 x11).
Apply H7 with x8 = x3x9 = x4prim1 x3 x0.
Assume H8: and (x5 = x0) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x6 x10 x11 = x1 x10 x11).
Apply H8 with (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x7 x10 x11 = x2 x10 x11)x8 = x3x9 = x4prim1 x3 x0.
Assume H9: x5 = x0.
Assume H10: ∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x6 x10 x11 = x1 x10 x11.
Assume H11: ∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x7 x10 x11 = x2 x10 x11.
Assume H12: x8 = x3.
Assume H13: x9 = x4.
Apply H9 with λ x10 x11 . prim1 x3 x10.
Apply H12 with λ x10 x11 . prim1 ... ....
...
...