Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ο be given.
Assume H0: ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3.
Let x3 of type ι be given.
Assume H3: x3 ∈ x1.
Let x4 of type ι be given.
Assume H5: x4 ∈ x0.
Let x5 of type ι be given.
Assume H6: x5 ∈ x0.
Let x6 of type ι be given.
Assume H7: x6 ∈ x0.
Let x7 of type ι be given.
Assume H8: x7 ∈ x0.
Let x8 of type ι be given.
Assume H9: x8 ∈ x0.
Apply setminusE with
x1,
Sing x3,
x4,
58403.. x2 x4 x5 x6 x7 x8 ⟶ ∀ x9 : ο . (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 3d300.. x2 x10 x11 x12 x3 x13 x14 ⟶ x9) ⟶ (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 8310d.. x2 x10 x11 x12 x13 x14 x3 ⟶ x9) ⟶ (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 9ab39.. x2 x3 x10 x11 x12 x13 x14 ⟶ x9) ⟶ (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 1e330.. x2 x3 x10 x11 x12 x13 x14 ⟶ x9) ⟶ (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ af3c4.. x2 x10 x11 x12 x3 x13 x14 ⟶ x9) ⟶ (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 85e71.. x2 x3 x10 x11 x12 x13 x14 ⟶ x9) ⟶ x9 leaving 2 subgoals.
Apply H4 with
x4.
The subproof is completed by applying H5.
Assume H10: x4 ∈ x1.
Apply setminusE with
x1,
Sing x3,
x5,
... ⟶ ∀ x9 : ο . ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ (∀ x10 . ... ⟶ ∀ x11 . ... ⟶ ∀ x12 . ... ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 85e71.. x2 x3 x10 x11 x12 x13 x14 ⟶ x9) ⟶ x9 leaving 2 subgoals.