Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ο be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ο be given.
Let x7 of type ι → ι → ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι → ο be given.
Let x11 of type ι be given.
Let x12 of type ι → ο be given.
Let x13 of type ι be given.
Let x14 of type ι → ο be given.
Let x15 of type ι be given.
Let x16 of type ι → ο be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι → ο be given.
Let x20 of type ι be given.
Let x21 of type ι → ο be given.
Let x22 of type ι be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι → ι → ι be given.
Let x26 of type ι be given.
Let x27 of type ι be given.
Let x28 of type ι → ο be given.
Let x29 of type ι → ο be given.
Let x30 of type ι → ι be given.
Let x31 of type ι be given.
Let x32 of type ι be given.
Let x33 of type ι → ο be given.
Let x34 of type ι be given.
Let x35 of type ι be given.
Let x36 of type ι be given.
Let x37 of type ι be given.
Let x38 of type ι be given.
Let x39 of type ι be given.
Let x40 of type ι → ο be given.
Let x41 of type ι → ι → ι → ο be given.
Let x42 of type ι be given.
Let x43 of type ι be given.
Let x44 of type ι → ι be given.
Let x45 of type ι → ι → ο be given.
Let x46 of type ι → ι be given.
Let x47 of type ι be given.
Let x48 of type ι → ο be given.
Assume H5:
∀ x49 x50 . x48 x50 ⟶ (x50 = x49 ⟶ False) ⟶ x48 x49 ⟶ False.
Assume H6:
∀ x49 x50 . x0 x49 x50 ⟶ x48 x50 ⟶ False.
Assume H7:
∀ x49 . x48 x49 ⟶ (x49 = x47 ⟶ False) ⟶ False.
Assume H8:
∀ x49 . x1 x49 ⟶ (x2 x49 x3 = x49 ⟶ False) ⟶ False.
Assume H9:
∀ x49 x50 x51 . x0 x49 x50 ⟶ x45 x50 (x46 x51) ⟶ x48 x51 ⟶ False.
Assume H10:
∀ x49 . x1 x49 ⟶ (x2 x4 x49 = x4 ⟶ False) ⟶ False.
Assume H11:
∀ x49 x50 x51 . x0 x50 x51 ⟶ x45 x51 (x46 x49) ⟶ (x45 x50 x49 ⟶ False) ⟶ False.
Assume H12:
∀ x49 . x1 x49 ⟶ (x5 x49 x4 = x49 ⟶ False) ⟶ False.
Assume H13:
∀ x49 . x1 x49 ⟶ (x2 x49 x4 = x4 ⟶ False) ⟶ False.
Assume H14:
∀ x49 x50 . x6 x50 x49 ⟶ (x45 x50 (x46 x49) ⟶ False) ⟶ False.
Assume H15:
∀ x49 x50 . x45 x50 (x46 x49) ⟶ (x6 x50 x49 ⟶ False) ⟶ False.
Assume H16:
∀ x49 . x1 x49 ⟶ (x7 x3 x49 = x49 ⟶ False) ⟶ False.
Assume H17:
∀ x49 x50 . x45 x49 x50 ⟶ (x48 x50 ⟶ False) ⟶ (x0 x49 x50 ⟶ False) ⟶ False.
Assume H18:
∀ x49 . x1 x49 ⟶ (x7 x49 x4 = x4 ⟶ False) ⟶ False.
Assume H19:
∀ x49 x50 . x0 x50 x49 ⟶ (x45 x50 x49 ⟶ False) ⟶ False.
Assume H20:
(x45 x47 x8 ⟶ False) ⟶ False.
Assume H21:
∀ x49 x50 . x1 x50 ⟶ x1 x49 ⟶ x7 x49 x50 = x44 x50 ⟶ (x50 = x4 ⟶ False) ⟶ (x49 = x44 x3 ⟶ False) ⟶ False.
Assume H22:
∀ x49 x50 . x1 x50 ⟶ x1 x49 ⟶ (x5 (x44 x50) (x44 x49) = x5 x49 x50 ⟶ False) ⟶ False.
Assume H23:
∀ x49 x50 x51 . x1 x51 ⟶ x1 x49 ⟶ x1 x50 ⟶ (x7 (x7 x51 x49) x50 = x7 x51 (x7 x49 x50) ⟶ False) ⟶ False.
Assume H24:
∀ x49 x50 x51 . ... ⟶ ... ⟶ ... ⟶ (x7 x51 (x2 x49 x50) = x2 (x7 ... ...) ... ⟶ False) ⟶ False.