Let x0 of type ι be given.
Let x1 of type ι → ι → ο be given.
Assume H0: ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2.
Let x2 of type ι be given.
Assume H1: x2 ∈ x0.
Let x3 of type ι be given.
Assume H2: x3 ∈ x0.
Let x4 of type ι be given.
Assume H3: x4 ∈ x0.
Let x5 of type ι be given.
Assume H4: x5 ∈ x0.
Let x6 of type ι be given.
Assume H5: x6 ∈ x0.
Let x7 of type ι be given.
Assume H6: x7 ∈ x0.
Assume H7:
85e71.. x1 x2 x3 x4 x5 x6 x7.
Apply unknownprop_f057c2976d71c30a17865e84d4e5f42f62dac1ed50ab05379d1ccbeb377b9858 with
x0,
x1,
x2,
x3,
x4,
x6,
x5,
x7 leaving 8 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H5.
The subproof is completed by applying H4.
The subproof is completed by applying H6.
Apply unknownprop_b74cde00900b05f3d1ec3f017b9e5ee2fe67e6851e25c5a9299db9c7bd79dddf with
x0,
x1,
x2,
x3,
x4,
x5,
x6,
x7 leaving 8 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying H6.
The subproof is completed by applying H7.