Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιο be given.
Let x4 of type ιιο be given.
Let x5 of type ιο be given.
Let x6 of type ιο be given.
Let x7 of type ιο be given.
Let x8 of type ιο be given.
Assume H0: ∀ x9 . x9x0∀ x10 . x10x0x1 x9 x10 = x2 x9 x10.
Assume H1: ∀ x9 . x9x0∀ x10 . x10x0iff (x3 x9 x10) (x4 x9 x10).
Assume H2: ∀ x9 . x9x0iff (x5 x9) (x6 x9).
Assume H3: ∀ x9 . x9x0iff (x7 x9) (x8 x9).
Claim L4: ...
...
Apply L4 with λ x9 x10 . lam 5 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) (encode_b x0 x1) (If_i (x11 = 2) (encode_r x0 x3) (If_i (x11 = 3) (Sep x0 x5) (Sep x0 x7))))) = lam 5 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x9 (If_i (x11 = 2) (encode_r x0 x4) (If_i (x11 = 3) (Sep x0 x6) (Sep x0 x8))))).
Claim L5: ...
...
Apply L5 with λ x9 x10 . lam 5 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) (encode_b x0 x1) (If_i (x11 = 2) (encode_r x0 x3) (If_i (x11 = 3) (Sep x0 x5) (Sep x0 x7))))) = lam 5 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) (encode_b x0 x1) (If_i (x11 = 2) x9 (If_i (x11 = 3) (Sep x0 x6) (Sep x0 x8))))).
Claim L6: ...
...
Apply L6 with λ x9 x10 . lam 5 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) (encode_b x0 x1) (If_i (x11 = 2) (encode_r x0 x3) (If_i (x11 = 3) (Sep x0 x5) (Sep x0 x7))))) = lam 5 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) (encode_b x0 x1) (If_i (x11 = 2) (encode_r x0 x3) (If_i (x11 = 3) x9 (Sep x0 x8))))).
Claim L7: ...
...
Apply L7 with λ x9 x10 . lam 5 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) (encode_b x0 x1) (If_i (x11 = 2) (encode_r x0 ...) ...))) = ....
...