Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
→
ι
→
ι
→
ο
be given.
Assume H0:
∀ x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x4
x2
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x1
x4
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x1
x2
x4
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x4
x5
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x4
x2
x5
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x1
x4
x5
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
∀ x6 .
prim1
x6
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x4
x5
x6
)
⟶
x0
x1
x2
x3
.
Claim L1:
∀ x1 .
ordinal
x1
⟶
∀ x2 .
ordinal
x2
⟶
∀ x3 .
ordinal
x3
⟶
∀ x4 .
prim1
x4
(
56ded..
x1
)
⟶
∀ x5 .
prim1
x5
(
56ded..
x2
)
⟶
∀ x6 .
prim1
x6
(
56ded..
x3
)
⟶
x0
x4
x5
x6
Apply ordinal_ind with
λ x1 .
∀ x2 .
ordinal
x2
⟶
∀ x3 .
ordinal
x3
⟶
∀ x4 .
prim1
x4
(
56ded..
x1
)
⟶
∀ x5 .
prim1
x5
(
56ded..
x2
)
⟶
∀ x6 .
prim1
x6
(
56ded..
x3
)
⟶
x0
x4
x5
x6
.
Let x1 of type
ι
be given.
Assume H1:
ordinal
x1
.
Assume H2:
∀ x2 .
prim1
x2
x1
⟶
∀ x3 .
ordinal
x3
⟶
∀ x4 .
ordinal
x4
⟶
∀ x5 .
prim1
x5
(
56ded..
x2
)
⟶
∀ x6 .
prim1
x6
(
56ded..
x3
)
⟶
∀ x7 .
prim1
x7
(
56ded..
x4
)
⟶
x0
x5
x6
x7
.
Apply ordinal_ind with
λ x2 .
∀ x3 .
ordinal
x3
⟶
∀ x4 .
prim1
x4
(
56ded..
x1
)
⟶
∀ x5 .
prim1
x5
(
56ded..
x2
)
⟶
∀ x6 .
prim1
x6
(
56ded..
x3
)
⟶
x0
x4
x5
x6
.
Let x2 of type
ι
be given.
Assume H3:
ordinal
x2
.
Assume H4:
∀ x3 .
prim1
...
...
⟶
∀ x4 .
ordinal
x4
⟶
∀ x5 .
prim1
x5
(
56ded..
x1
)
⟶
∀ x6 .
prim1
x6
(
56ded..
x3
)
⟶
∀ x7 .
prim1
x7
(
56ded..
x4
)
⟶
x0
x5
x6
x7
.
...
Apply unknownprop_569cb471be0809144fbd3507f3df6cc41b74b600f6043368ffb19c3a241db662 with
x0
.
The subproof is completed by applying L1.
■