Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιιιο be given.
Let x2 of type ιι be given.
Let x3 of type ιιιιιι be given.
Let x4 of type ιο be given.
Let x5 of type ιιιο be given.
Let x6 of type ιι be given.
Let x7 of type ιιιιιι be given.
Let x8 of type ιι be given.
Let x9 of type ιιιι be given.
Let x10 of type ιι be given.
Let x11 of type ιιιι be given.
Let x12 of type ιι be given.
Let x13 of type ιι be given.
The subproof is completed by applying andI with ∀ x14 . x0 x14x7 (x8 x14) (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14)) (x9 x14 (x10 (x8 x14)) (x12 x14)) = x6 (x8 x14), ∀ x14 . x4 x14x3 (x10 x14) (x10 (x8 (x10 x14))) (x10 x14) (x11 (x8 (x10 x14)) x14 (x13 x14)) (x12 (x10 x14)) = x2 (x10 x14).