Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι → ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι be given.
Let x4 of type ι → ι → ι → ι → ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ο be given.
Let x7 of type ι be given.
Let x8 of type ι → ι be given.
Let x9 of type ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι be given.
Let x12 of type ι be given.
Let x13 of type ι → ι → ι be given.
Let x14 of type ι → ι → ι be given.
Let x15 of type ι → ι → ι → ι be given.
Let x16 of type ι → ι → ι → ι be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι be given.
Let x21 of type ι → ο be given.
Let x22 of type ι → ι be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι → ο be given.
Let x26 of type ι → ι be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι → ι be given.
Let x29 of type ι → ι → ο be given.
Let x30 of type ι → ι be given.
Let x31 of type ι → ι → ο be given.
Let x32 of type ι → ο be given.
Let x33 of type ι → ι → ο be given.
Let x34 of type ι → ι → ο be given.
Let x35 of type ι → ι be given.
Let x36 of type ι → ο be given.
Assume H5:
∀ x37 x38 . x36 x38 ⟶ (x38 = x37 ⟶ False) ⟶ x36 x37 ⟶ False.
Assume H6:
∀ x37 x38 x39 x40 . x0 x39 x40 ⟶ x0 x38 x37 ⟶ (x0 (x2 x39 x38) (x1 x40 x37) ⟶ False) ⟶ False.
Assume H7:
∀ x37 x38 x39 x40 . x0 (x2 x38 x40) (x1 x37 x39) ⟶ (x0 x40 x39 ⟶ False) ⟶ False.
Assume H8:
∀ x37 x38 x39 x40 . x0 (x2 x40 x38) (x1 x39 x37) ⟶ (x0 x40 x39 ⟶ False) ⟶ False.
Assume H9:
∀ x37 x38 . x0 x37 x38 ⟶ x36 x38 ⟶ False.
Assume H10:
∀ x37 . x36 x37 ⟶ (x37 = x3 ⟶ False) ⟶ False.
Assume H11:
∀ x37 x38 x39 . x0 x37 x38 ⟶ x34 x38 (x35 x39) ⟶ x36 x39 ⟶ False.
Assume H12:
∀ x37 x38 x39 . x0 x38 x39 ⟶ x34 x39 (x35 x37) ⟶ (x34 x38 x37 ⟶ False) ⟶ False.
Assume H13:
∀ x37 x38 . x33 x38 x37 ⟶ (x34 x38 (x35 x37) ⟶ False) ⟶ False.
Assume H14:
∀ x37 x38 . x34 x38 (x35 x37) ⟶ (x33 x38 x37 ⟶ False) ⟶ False.
Assume H15:
∀ x37 x38 . x34 x37 x38 ⟶ (x36 x38 ⟶ False) ⟶ (x0 x37 x38 ⟶ False) ⟶ False.
Assume H16:
∀ x37 x38 . x0 x38 x37 ⟶ (x34 x38 x37 ⟶ False) ⟶ False.
Assume H17:
∀ x37 . (x33 x37 x37 ⟶ False) ⟶ False.
Assume H18:
∀ x37 x38 x39 x40 . x34 x40 (x35 (x1 x39 x38)) ⟶ (x4 x39 x38 x37 x40 = x5 x37 x40 ⟶ False) ⟶ False.
Assume H19:
∀ x37 x38 . x32 x38 ⟶ x31 x38 x37 ⟶ (x5 x37 x38 = x38 ⟶ False) ⟶ False.
Assume H20:
∀ x37 x38 . x32 x38 ⟶ (x5 x37 (x5 x37 x38) = x5 x37 x38 ⟶ False) ⟶ False.
Assume H21:
∀ x37 . (x36 x37 ⟶ False) ⟶ (x29 (x30 x37) x37 ⟶ False) ⟶ False.
Assume H22:
∀ x37 . (x36 x37 ⟶ False) ⟶ (x34 (x30 x37) (x35 x37) ⟶ False) ⟶ False.
Assume H23:
∀ x37 . x29 (x28 x37) x37 ⟶ False.
Assume H24:
∀ x37 . (x34 (x28 x37) (x35 x37) ⟶ False) ⟶ False.
Assume H25:
∀ x37 x38 . (x31 (x27 x37 ...) ... ⟶ False) ⟶ False.