Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Apply RealsStruct_Npos_props with
x0
,
RealsStruct_Npos
x0
⊆
field0
x0
leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H1:
RealsStruct_Npos
x0
⊆
field0
x0
.
Assume H2:
explicit_Nats
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x1 .
field1b
x0
x1
(
RealsStruct_one
x0
)
)
.
Assume H3:
RealsStruct_one
x0
∈
RealsStruct_Npos
x0
.
Assume H4:
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
field1b
x0
x1
(
RealsStruct_one
x0
)
=
RealsStruct_one
x0
⟶
∀ x2 : ο .
x2
.
Assume H5:
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
∀ x2 :
ι → ο
.
x2
(
RealsStruct_one
x0
)
⟶
(
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
x2
(
field1b
x0
x3
(
RealsStruct_one
x0
)
)
)
⟶
x2
x1
.
Assume H6:
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
explicit_Nats_one_plus
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x3 .
field1b
x0
x3
(
RealsStruct_one
x0
)
)
x1
x2
=
field1b
x0
x1
x2
.
Assume H7:
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
explicit_Nats_one_mult
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x3 .
field1b
x0
x3
(
RealsStruct_one
x0
)
)
x1
x2
=
field2b
x0
x1
x2
.
Assume H8:
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
field1b
x0
x1
x2
∈
RealsStruct_Npos
x0
.
Assume H9:
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
field2b
x0
x1
x2
∈
RealsStruct_Npos
x0
.
The subproof is completed by applying H1.
■