Search for blocks/addresses/...

Proofgold Address

address
PUKqvxBHkb37ijmmtikfQoKj9TqHn6eYKpr
total
0
mg
-
conjpub
-
current assets
38724../35251.. bday: 21761 doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known 3c838.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι → ι → ο . (∀ x3 x4 x5 x6 . x0 x3x0 x4x0 x5x0 x6∀ x7 : ο . (x1 x3 x4 x5 x6x7)(x2 x3 x4 x5 x6x7)(x1 x5 x6 x3 x4x7)x7)(∀ x3 x4 x5 x6 . x0 x3x0 x4x0 x5x0 x6x2 x3 x4 x5 x6x2 x5 x6 x3 x4)∀ x3 . x0 x3∀ x4 . x0 x4∀ x5 . x0 x5∀ x6 . x0 x6∀ x7 . x0 x7∀ x8 . x0 x8∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14not (x2 x3 x4 x5 x6)not (x2 x3 x4 x7 x8)not (x2 x3 x4 x9 x10)not (x2 x3 x4 x11 x12)not (x2 x3 x4 x13 x14)not (x2 x5 x6 x7 x8)not (x2 x5 x6 x9 x10)not (x2 x5 x6 x11 x12)not (x2 x5 x6 x13 x14)not (x2 x7 x8 x9 x10)not (x2 x7 x8 x11 x12)not (x2 x7 x8 x13 x14)not (x2 x9 x10 x11 x12)not (x2 x9 x10 x13 x14)not (x2 x11 x12 x13 x14)∀ x15 : ο . (∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24∀ x25 . x0 x25∀ x26 . x0 x26∀ x27 . x0 x27x1 x16 x17 x18 x19x1 x18 x19 x20 x21x1 x20 x21 x22 x23x1 x22 x23 x24 x25x1 x24 x25 x26 x27not (x2 x16 x17 x18 x19)not (x2 x16 x17 x20 x21)not (x2 x16 x17 x22 x23)not (x2 x16 x17 x24 x25)not (x2 x16 x17 x26 x27)not (x2 x18 x19 x20 x21)not (x2 x18 x19 x22 x23)not (x2 x18 x19 x24 x25)not (x2 x18 x19 x26 x27)not (x2 x20 x21 x22 x23)not (x2 x20 x21 x24 x25)not (x2 x20 x21 x26 x27)not (x2 x22 x23 x24 x25)not (x2 x22 x23 x26 x27)not (x2 x24 x25 x26 x27)(∀ x28 : ο . (x16 = x3x17 = x4x18 = x5x19 = x6x28)(x16 = x3x17 = x4x20 = x5x21 = x6x28)(x16 = x3x17 = x4x22 = x5x23 = x6x28)(x16 = x3x17 = x4x24 = x5x25 = x6x28)(x16 = x3x17 = x4x26 = x5x27 = x6x28)(x18 = x3x19 = x4x16 = x5x17 = x6x28)(x18 = x3x19 = x4x20 = x5x21 = x6x28)(x18 = x3x19 = x4x22 = x5x23 = x6x28)(x18 = x3x19 = x4x24 = x5x25 = x6x28)(x18 = x3x19 = x4x26 = x5x27 = x6x28)(x20 = x3x21 = x4x16 = x5x17 = x6x28)(x20 = x3x21 = x4x18 = x5x19 = x6x28)(x20 = x3x21 = x4x22 = x5x23 = x6x28)(x20 = x3x21 = x4x24 = x5x25 = x6x28)(x20 = x3x21 = x4x26 = x5x27 = x6x28)(x22 = x3x23 = x4x16 = x5x17 = x6x28)(x22 = x3x23 = x4x18 = x5x19 = x6x28)(x22 = x3x23 = x4x20 = x5x21 = x6x28)(x22 = x3x23 = x4x24 = x5x25 = x6x28)(x22 = x3x23 = x4x26 = x5x27 = x6x28)(x24 = x3x25 = x4x16 = x5x17 = x6x28)(x24 = x3x25 = x4x18 = x5x19 = x6x28)(x24 = x3x25 = x4x20 = x5x21 = x6x28)(x24 = x3x25 = x4x22 = x5x23 = x6x28)(x24 = x3x25 = x4x26 = x5x27 = x6x28)(x26 = x3x27 = x4x16 = x5x17 = x6x28)(x26 = x3x27 = x4x18 = x5x19 = x6x28)(x26 = x3x27 = x4x20 = x5x21 = x6x28)(x26 = x3x27 = x4x22 = x5x23 = x6x28)(x26 = x3x27 = x4x24 = x5x25 = x6x28)x28)x15)x15
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 712bb.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)x0 x2x0 x3x0 x4x0 x5x1 x2x1 x3x1 x4x1 x5(x2 = x3∀ x8 : ο . x8)(x2 = x4∀ x8 : ο . x8)(x2 = x5∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x2 = x7∀ x8 : ο . x8)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x3 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x4 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x5 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x6))∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13∀ x14 : ο . (x8 x10 x11 x12 x13x14)(x9 x10 x11 x12 x13x14)(x8 x12 x13 x10 x11x14)x14)(∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13x9 x10 x11 x12 x13x9 x12 x13 x10 x11)∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12x1 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20not (x9 x10 x2 x11 x12)not (x9 x10 x2 x13 x14)not (x9 x10 x2 x15 x16)not (x9 x10 x2 x17 x18)not (x9 x10 x2 x19 x20)not (x9 x11 x12 x13 x14)not (x9 x11 x12 x15 x16)not (x9 x11 x12 x17 x18)not (x9 x11 x12 x19 x20)not (x9 x13 x14 x15 x16)not (x9 x13 x14 x17 x18)not (x9 x13 x14 x19 x20)not (x9 x15 x16 x17 x18)not (x9 x15 x16 x19 x20)not (x9 x17 x18 x19 x20)∀ x21 : ο . (∀ x22 . x0 x22∀ x23 . x0 x23x1 x23∀ x24 . x0 x24∀ x25 . x0 x25∀ x26 . x0 x26∀ x27 . x0 x27∀ x28 . x0 x28∀ x29 . x0 x29∀ x30 . x0 x30∀ x31 . x0 x31∀ x32 . x0 x32x8 x22 x2 x24 x23x8 x24 x23 x25 x26x8 x25 x26 x27 x28x8 x27 x28 x29 x30x8 x29 x30 x31 x32not (x9 x22 x2 x24 x23)not (x9 x22 x2 x25 x26)not (x9 x22 x2 x27 x28)not (x9 x22 x2 x29 x30)not (x9 x22 x2 x31 x32)not (x9 x24 x23 x25 x26)not (x9 x24 x23 x27 x28)not (x9 x24 x23 x29 x30)not (x9 x24 x23 x31 x32)not (x9 x25 x26 x27 x28)not (x9 x25 x26 x29 x30)not (x9 x25 x26 x31 x32)not (x9 x27 x28 x29 x30)not (x9 x27 x28 x31 x32)not (x9 x29 x30 x31 x32)x21)x21 (proof)
Theorem 3dd41.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)x0 x2x0 x3x0 x4x0 x5x1 x2x1 x3x1 x4x1 x5(x2 = x3∀ x8 : ο . x8)(x2 = x4∀ x8 : ο . x8)(x2 = x5∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x2 = x7∀ x8 : ο . x8)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x3 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x4 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x5 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x6))∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13∀ x14 : ο . (x8 x10 x11 x12 x13x14)(x9 x10 x11 x12 x13x14)(x8 x12 x13 x10 x11x14)x14)(∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13x9 x10 x11 x12 x13x9 x12 x13 x10 x11)∀ x10 x11 x12 : ι → ι → ι . (∀ x13 . x0 x13∀ x14 . x0 x14x0 (x10 x13 x14))(∀ x13 . x0 x13∀ x14 . x1 x14x1 (x10 x13 x14))(∀ x13 . x0 x13∀ x14 . x0 x14x10 x13 (x10 x13 x14) = x14)(∀ x13 . x0 x13x10 x13 x2 = x3)(∀ x13 . x0 x13∀ x14 . x0 x14x0 (x11 x13 x14))(∀ x13 . x0 x13∀ x14 . x1 x14x1 (x11 x13 x14))(∀ x13 . x0 x13∀ x14 . x0 x14x11 x13 (x11 x13 x14) = x14)(∀ x13 . x0 x13x11 x13 x2 = x4)(∀ x13 . x0 x13∀ x14 . x0 x14x0 (x12 x13 x14))(∀ x13 . x0 x13∀ x14 . x1 x14x1 (x12 x13 x14))(∀ x13 . x0 x13∀ x14 . x0 x14x12 x13 (x12 x13 x14) = x14)(∀ x13 . x0 x13x12 x13 x2 = x5)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x9 x13 x14 x15 x16)not (x9 x13 (x10 x13 x14) x15 (x10 x15 x16)))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x9 x13 x14 x15 x16)not (x9 x13 (x11 x13 x14) x15 (x11 x15 x16)))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x9 x13 x14 x15 x16)not (x9 x13 (x12 x13 x14) x15 (x12 x15 x16)))∀ x13 . x1 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16x1 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24not (x9 x14 x13 x15 x16)not (x9 x14 x13 x17 x18)not (x9 x14 x13 x19 x20)not (x9 x14 x13 x21 x22)not (x9 x14 x13 x23 x24)not (x9 x15 x16 x17 x18)not (x9 x15 x16 x19 x20)not (x9 x15 x16 x21 x22)not (x9 x15 x16 x23 x24)not (x9 x17 x18 x19 x20)not (x9 x17 x18 x21 x22)not (x9 x17 x18 x23 x24)not (x9 x19 x20 x21 x22)not (x9 x19 x20 x23 x24)not (x9 x21 x22 x23 x24)∀ x25 : ο . (∀ x26 . x0 x26∀ x27 . x0 x27x1 x27∀ x28 . x0 x28∀ x29 . x0 x29∀ x30 . x0 x30∀ x31 . x0 x31∀ x32 . x0 x32∀ x33 . x0 x33∀ x34 . x0 x34∀ x35 . x0 x35∀ x36 . x0 x36x8 x26 x2 x28 x27x8 x28 x27 x29 x30x8 x29 x30 x31 x32x8 x31 x32 x33 x34x8 x33 x34 x35 x36not (x9 x26 x2 x28 x27)not (x9 x26 x2 x29 x30)not (x9 x26 x2 x31 x32)not (x9 x26 x2 x33 x34)not (x9 x26 x2 x35 x36)not (x9 x28 x27 x29 x30)not (x9 x28 x27 x31 x32)not (x9 x28 x27 x33 x34)not (x9 x28 x27 x35 x36)not (x9 x29 x30 x31 x32)not (x9 x29 x30 x33 x34)not (x9 x29 x30 x35 x36)not (x9 x31 x32 x33 x34)not (x9 x31 x32 x35 x36)not (x9 x33 x34 x35 x36)x25)x25 (proof)

previous assets